HSF Update

Michel Jouvin, CNRS/LAL - Graeme A Stewart, CERN EP-SFT
Community White Paper

- Published in Computing and Software for Big Science
 - https://doi.org/10.1007/s41781-018-0018-8
- Already 19 citations to this CSBS version
Meeting the HL-LHC Challenge!

- Already since the Roadmap was written, experiments have made great progress in meeting the HL-LHC challenge:
 - Bad software, is extremely expensive
 - Good and clever software allows much more physics to fit in the budget
HOW2019 Workshop

- Joint HSF, WLCG, OSG meeting at Jefferson Lab, VA
 - 246 registrations
- Plenary programme covering topics of mutual interest
- Parallel sessions for more focused topics
HOW2019 Highlights

● Overview contributions from non-LHC and non-HEP experiments
 ○ DUNE, Belle II, Dark Matter, EIC, LSST, LIGO/VIRGO, IceCube
 ○ Common challenges and problems faced by these communities

● Technology watch and focused session on how we adapt our software for non-CPU and heterogeneous resources

● Sessions from new HSF Working Groups...
 ○ Analysis, Reconstruction, Simulation

● ... and other HSF working groups (+ WLCG + OSG)
 ○ Training, Software Tools, PyHEP

● Last day discussion of funding initiatives
 ○ IRIS (UK), IRIS-HEP (US), IDT-UM (DE)
HSF Working Groups

- The Roadmap established what challenges the community faced
 - But it did not spell out *how* to face them in detail
- HSF had adopted a model of *working groups* from its earliest days
 - These were open groups of people in the community, motivated enough to organise around a common topic, usually at their own initiative
- This model seemed a good one for moving forwards on the key topics
 - We were a little more formal this time around
 - Call for nominations from the whole community, then search committee
 - Significant engagement from LHC experiments and beyond, e.g. Belle II
- The HSF’s role is one of an information conduit and meeting point
 - Report on interesting and common work being done
 - Forum for technical comments and discussion
 - Encourage cooperation across experiments and regions
Detector Simulation WG...

- A major consumer of LHC grid resources today
 - Experiments with higher data rates will need to more simulation

- Faster simulation, with no or minimal loss of accuracy, is the goal
 - Range of techniques have been used for a long time (frozen showers, parametric response)
 - Key point is deciding when it’s good enough for physics

- Machine learning lends itself to problems like this
 - Calorimeter simulations usually targeted
 - Variational Auto Encoders (VAEs) attempt to compress the data down to a ‘latent space’ - can be randomly sampled to generate new events
 - Generative Adversarial Networks (GANs) train two networks, one to generate events, the other to try to classify as real/fake
 - R&D on lifecycle integration into Geant4 is starting...

LHCb ECal simulated with G4, generated with GAN [F. Ratnikov]
... Detector Simulation WG

- Technical improvement programme helps (and helps everyone)
- GeantV R&D modernises code and introduces vectorisation
 - Speed-ups observed
 - Vectorisation introduces small gains
 - Code modernisation seems to help a lot
 - Full report on this R&D after the summer
- Geant4 now have a new R&D working group that will take studies forward
- Some studies of running Geant4 on GPUs have begun
 - US Exascale Computing Project is funding this, motivated by upcoming exaflop supercomputers
 - 90-95% of FLOP capacity in GPUs
 - However, migration of physics code is an incredibly tricky business
 - This would be a long haul, but a huge achievement for all of HEP if we succeed...
Reconstruction and Software Triggers WG

- Software triggers close to the machine required to deal with tremendous rates and to get sufficient discrimination
 - Pressure to break with legacy code is high
 - Lots of experimentation with rewriting code for GPUs
 - In production for ALICE (since Run2)
 - Advanced prototypes for CMS (Patatrack) and LHCb (Allen)
- **Orienting the design around the data** (optimal layouts) is critical
 - This was a key topic identified at JLab HOW Workshop, lots of ongoing discussions since then (including last week meeting, https://indico.cern.ch/event/823263/)
- **Real Time Analysis becomes more and more important**
 - Produce analysis useful outputs as part of the trigger decision
 - LHCb Turbo strategy here is well known
 - ATLAS and CMS also doing some analysis this way also
Data Analysis WG

- Improve analysis ergonomics - how the user interacts with the system to express their analysis
 - Streamline common tasks
 - Handle all input datasets; Corrections and systematics
 - Compute per event and accumulate; Statistical interpretations
 - **Declarative models**, building on ROOT’s RDataFrame
 - Say *what*, not *how* and let the backend optimise
 - E.g. split and merge, GPU execution

- Notebook like interfaces gain ground, as do containers - lots of high level Python tools
 - Links strongly to PyHEP group

- Interest in data science tools and machine learning is significant for this community - inspiring new approaches (e.g. Scikit-HEP (uproot, awkward array), Coffea, IRIS-HEP)
 - This is an ecosystem into which HEP can contribute

- Links to DOMA and facilities through interest in dedicated analysis clusters

Many analysis frameworks, multiple per experiment, not well generalised

A. Rizzi, NAIL prototype
Event Generation WG...

- Event generators are the start of the simulation chain
 - At the LHC Run1 only leading order generators were used
 - With Run3/4, higher order generators become much more important and are much more costly to run

- HSF/LPCC workshop in November brought theory and experiment together to look at computing challenges of event generation
 - This was the first workshop of its kind

- Working group tackling technical challenges
 - Setting a baseline for further comparisons
 - Support for technical improvements (e.g. thread safety)
... Event Generation WG

- Better understanding of ATLAS/CMS CPU usage of generators
 - A lot of CMS usage is folded into combined jobs (evgen+sim+reco)
 - Overall usage not as different as previously thought: ~x2-3 rather than x10
 - Insight into different setups and strategies
 - ATLAS filter events more aggressively (increases CPU time, but better populates phase space)
 - Sherpa CPU per event can be improved by x2-3 with a different scale factor choice

- Document summarising these findings is in progress
 - Establish a good baseline of understanding
Event Generation on HPCs and GPUs

- Considerable progress on efficient use of large clusters of machines for event generation
 - Targeting HPC resources in particular
 - Scaling up to 2048 nodes
 - Enables simulation of W/Z+9j with Sherpa/Pythia

- Porting to other architectures
 - Could be very suitable code to do this with (smaller, self contained code bases, numerically intensive)
 - Will also follow up with MadGraph team on their GPU port of some pieces of this generator... but this looks far away from being a working production setup “out of the box”
Software Nuts and Bolts

● Software Tools WG
 ○ Active group promoting best practice for correctness and performance
 ○ There has been a revolution in adopting best open source practice in recent years
 ■ git, GitHub, GitLab, CMake, merge requests, code review, ...
 ○ Topical meeting on a new monitoring tool (Trident, from CERN IT)
 ○ Best practice in use of static analysers and performance monitoring

● Packaging WG
 ○ Key component to build an ecosystem and allow to assemble modules as needed
 ○ Need a software stack, incorporating many components from the open source world and HEP community
 ■ This touches deeply on license and license combinations
 ○ Preference for tools that are not home grown and have a wider support base
 ○ Active prototyping activities: Spack (LBNL) in use in Neutrino experiments + FCC, Conda for analysis SW delivery (ROOT for example)
Frameworks and Integration

● Increasingly heterogeneous world requires advanced software support infrastructure
 ○ Software frameworks support use of different devices as well as insulate developers from many of the details of concurrency and threading models
 ■ Adapt to the new heterogeneous landscape
 ■ Latency hiding is critical to maintaining throughout
 ○ Framework development has traditionally been quite fragmented, but new experiments should offer a chance to increase convergence
 ■ Better to start off together than try to re-converge later (iLCSof, LArSoft examples of success, albeit without concurrency; Gaudi for LHCb, ATLAS)
 ■ E.g. ALFA for ALICE and FAIR experiments

● New HSF working group being established now (draft mandate)
 ● Currently in the convenor nomination phase
Google Summer of Code / Season of Docs

- 34 slots granted by Google
 - Up 5 from last year
 - One project was disqualified, so we could use 33 slots
- Google have also launched a programme to improve the quality of documentation
 - Supports a technical writer for open source projects
 - We are exploring this with proposals from ROOT and Rucio
- 3 administrators: 2 from CERN/SFT, 1 external (LAL)
 - Same admins for both programs
Training and Careers

- Many new skills are needed for today’s software developers and users
- Base has relatively uniform demands
 - Any common components help us
- LHCb StarterKit initiative taken up by several experiments, sharing training material
 - Links to ‘Carpentries’ being remade (US training projects) - up the level!
- New areas of challenge
 - Concurrency, accelerators, data science
 - Need to foster new C++ expertise (unlikely to be replaced soon as our core language, but needs to be modernised)
- Careers area for HEP software experts is an area of great concern
 - Need a functioning career path that retains skills and rewards passing them on
 - Recognition that software is a key part of HEP now
Raising Software’s Profile and ESPP

- HSF contributed a paper to the European Strategy Update process
 - Considerable HSF discussion and input to talk on Software R&D at Granada
- Mentioned as a critical issues in Granada summary talk on Detector R&D and computing
 - **Training** - how to equip developers with the correct skills
 - From starting students to refresh for experienced people
 - **Careers**
 - Establish a viable long term career path for HEP software experts: involving them with training activities is helpful, especially through universities
- Discussions started on meaningful ways to develop this activity, involving computer scientists and software engineers
 - Make links with other data intensive sciences with similar challenges
 - E.g. dark matter and astro-particle have expressed interest in this area
Next WLCG/HSF Workshop (Adelaide)

- Date: week-end before CHEP, November 2-3 (noon to noon)
 - Will be officially announced as part of the next CHEP bulletin
- Focused on analysis: *From Future Facilities to Final Plots*
 - Not the usual format reviewing many things as it will be a short meeting
- Program committee (main members): WLCG (Ian B. + C.), HSF (M. Jouvin, G. Stewart), DOMA project (S. Campana), HSF Analysis WG (P. Laycock)
 - Main topics identified
 - Working on session definitions to ensure that they are relevant to both HSF and WLCG: don’t want 2 workshops in one...
- CHEP will also cover many of the issues tackled by HSF
Conclusions

- We have a wide ranging and ambitious physics programme in HEP and in associated disciplines
 - Our experiments are highly data intensive and require high quality software and computing
- The landscape for software is becoming ever more challenging
 - Working together on common problems is a requirement for efficiency and from our F.A.
- HSF increasing communication between experiments
 - Working groups are active and meeting regularly
 - Forum for exchange of ideas
 - We hope that common development areas will arise from this
- HSF also recognised as playing a role as an advocate for software
 - This raises the profile of software as a critical activity
 - But progress on training and careers really is needed

HL-LHC is a challenge and also a great opportunity to improve HEP software
Useful Links

- HSF web site: https://hepsoftwarefoundation.org

- ESPP Open Workshop, Granada, May 2019

- Software update report @LHCC, G. Stewart, June 2019
Backup Slides
Decreasing Returns over Time

- Conclusion is that diversity of new architectures will only grow
- Best known example is of GPUs

[link]
Hardware Evolution in a Nutshell

Oh brave new world!
That has such people in it...

c. 2000

CPU
Memory
Spinning Disk
Tape

c. 2019

CPU
L1 Cache
L2 Cache
L3 Cache
Persistent Memory / On-die DRAM
SSD Cache
Spinning Disk
Network (inc. Wide Area)
Tape

Device BUS / Network
Device Memory
CPU / FPGA
Drivers of Technology Evolution

- Low power devices
 - Driven by mobile technology and Internet of Things

- Data centre processing
 - Extremely large clusters running fairly specialist applications

- Machine learning
 - New silicon devices specialised for training machine learning algorithms, particularly low precision calculations

- Exascale computing
 - Not in itself general purpose, but poses many technical problems whose solutions can be general - HEP pushed to use HPC centres, especially in US

- Energy efficiency is a driver for all of these developments
 - Specialist processors would be designed for very specific tasks
 - Chips would be unable to power all transistors at once: dark silicon is unlit when not used
Software Challenges and Opportunities
Concurrency

- The one overriding characteristic of modern processor hardware is concurrency
 - SIMD - Single Instruction Multiple Data (a.k.a. vectorisation)
 - Doing exactly the same operation on multiple data objects
 - MIMD - Multiple Instruction Multiple Data (a.k.a. multi-threading or multi-processing)
 - Performing different operations on different data objects, but at the same time

- Because of the inherently parallel nature of HEP processing a lot of concurrency can be exploited at rough granularity
 - Run many jobs from the same task in parallel
 - Run different events from the same job in parallel

- However, the push to highly parallel processing (1000s of GPU cores) requires parallel algorithms
 - This often requires completely rethinking problems that had sequential solutions previously, e.g. finding track seeds via cellular automata (TrickTrack library, CMS and FCC)
Heterogeneity

● There are a lot of possible parallel architectures on the market
 ○ CPUs with multiple cores and wide registers
 ■ SSE4.2, AVX, AVX2, AVX512, Neon, SVE, Altivec/VMX, VSX
 ○ GPUs with many cores; FPGAs
 ■ Nvidia (many generations - often significantly different), AMD, Intel, ...

● In addition there are ‘far out’ architectures proposed, like Intel’s Configurable Spatial Architecture

● Many options for coding, both generic and specific:
 ○ Cuda, TBB, OpenACC, OpenMP, OpenCL (→ Vulcan), alpaka, Kokkos, ...

● Frustratingly no clear winner, mutually exclusive solutions and many niches
 ○ One option for now is to isolate the algorithmic code from a ‘wrapper’ that targets a particular device or architecture - approach of ALICE for their GPU/CPU code
 ○ Hiding details in a lower level library (e.g. VecCore) also helps insulate developers
Data Layout and Throughput

- Original HEP C++ Event Data Models were heavily inspired by the Object Oriented paradigm
 - Deep levels of inheritance
 - Access to data through various indirections
 - Scattered objects in memory

- Lacklustre performance was "hidden by the CPU and we survived LHC start

- In-memory data layout has been improved since then (e.g. ATLAS xAOD)
 - But still hard for the compiler to really figure out what’s going on
 - Function calls non-optimal
 - Extensive use of ‘internal’ EDMs in particular areas, e.g. tracking

- iLCSoft / LCIO also proved that common data models help a lot with common software development

- Want to be flexible re. device transfers and offer different persistency options
 - e.g. ALICE Run3 EDM optimised for message passing and the code generation approaches in FCC-hh PODIO EDM generator
Machine Learning

- Machine learning, or artificial intelligence, used for many years in HEP
 - Algorithms learn by example (training) how to perform tasks instead of being programmed
- Significant advances in the last years in ‘deep learning’
 - Deep means many neural network layers
 - Fast differentiability and use of GPUs
- Rapid development driven by industry
 - Vibrant ecosystem of tools and techniques
 - Highly optimised for modern, specialised hardware

ML minimisation problem - do this minimisation with 10^6 variables...

An example of a modern ML architecture
Machine Learning in HEP

● Better discrimination
 ○ Important input for analysis (see improvements with Higgs)
 ○ Also used at HLT as inference can be fast (N.B. training can be slow!)
 ○ HEP analogies to image recognition or text processing

● Replace expensive calculations with trained output
 ○ E.g. calorimeter simulations and other complex physical processes

● There are significant opportunities here
 ○ Need to combine physics and data science knowledge
 ○ Field evolves rapidly and we need to deepen our expertise

● Integration into our workflows is not at all settled
 ○ Resource provision, efficient use, heterogeneity and programming models pose problems
 ○ Training deep models may require significant resources

Table 1 | Effect of machine learning on the discovery and study of the Higgs boson

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Years of data collection</th>
<th>Sensitivity without machine learning</th>
<th>Sensitivity with machine learning</th>
<th>Ratio of P values</th>
<th>Additional data required</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS24 $H \rightarrow \gamma\gamma$</td>
<td>2011–2012</td>
<td>2.2σ, $P = 0.014$</td>
<td>2.7σ, $P = 0.0035$</td>
<td>4.0</td>
<td>51%</td>
</tr>
<tr>
<td>ATLAS43 $H \rightarrow \tau^+\tau^-$</td>
<td>2011–2012</td>
<td>2.5σ, $P = 0.0062$</td>
<td>3.4σ, $P = 0.00034$</td>
<td>18</td>
<td>85%</td>
</tr>
<tr>
<td>ATLAS99 $VH \rightarrow bb$</td>
<td>2011–2012</td>
<td>1.9σ, $P = 0.029$</td>
<td>2.5σ, $P = 0.0062$</td>
<td>4.7</td>
<td>73%</td>
</tr>
<tr>
<td>ATLAS41 $VH \rightarrow bb$</td>
<td>2015–2016</td>
<td>2.8σ, $P = 0.0026$</td>
<td>3.0σ, $P = 0.00135$</td>
<td>1.9</td>
<td>15%</td>
</tr>
<tr>
<td>CMS100 $VH \rightarrow bb$</td>
<td>2011–2012</td>
<td>1.4σ, $P = 0.081$</td>
<td>2.1σ, $P = 0.018$</td>
<td>4.5</td>
<td>125%</td>
</tr>
</tbody>
</table>

Machine learning at the energy and intensity frontiers of particle physics, https://doi.org/10.1038/s41586-018-0361-2

Use of Generative Adversarial Networks to simulate calorimeter showers, trained on G4 events (S. Vallacorsa)