

HEP Software Foundation

HSF Update

Michel Jouvin, CNRS/LAL - Graeme A Stewart, CERN EP-SFT

WLCG Overview Board, 12 June 2019

Community White Paper

• Published in Computing and Software for Big Science

Computing and Software for Big Science

- https://doi.org/10.1007/s41781-018-0018-8
- Already 19 citations to this CSBS version

A Roadmap for HEP Software and Computing R&D for the 2020s

Authors	Authors and affiliations
The HEP Software	Foundation 🖂 , Johannes Albrecht, Antonio Augusto Alves Jr, Guilherme Amadio, Giuseppe Andronico,
Nguyen Anh-Ky, La	urent Aphecetche, John Apostolakis, Makoto Asai, Luca Atzori, Marian Babik, Giuseppe Bagliesi,
Marilena Bandiera	monte, Sunanda Banerjee, Martin Barisits, <u>show 296 more</u>
Open Access Ori First Online: 20 M	39 1.1k

Xinchou Lou, Brigitte Vachon Scientific Secretaries: Emilia Leogrande, Rogers Jones

Meeting the HL-LHC Challenge!

- Already since the Roadmap was written experiments have made great progress in meeting the HL-LHC challenge
 - Bad software, is extremely expensive
 - Good and clever software allows much more physics to fit in the budget

HOW2019 Workshop

- Joint HSF, WLCG, OSG meeting at Jefferson Lab, VA
 - 246 registrations
- Plenary programme covering topics of mutual interest
- Parallel sessions for more focused topics

HOW2019 Highlights

- Overview contributions from non-LHC and non-HEP experiments
 - DUNE, Belle II, Dark Matter, EIC, LSST, LIGO/VIRGO, IceCube
 - Common challenges and problems faced by these communities
- Technology watch and focused session on how we adapt our software for non-CPU and heterogeneous resources
- Sessions from new HSF Working Groups...
 - Analysis, Reconstruction, Simulation
- ... and other HSF working groups (+ WLCG + OSG)
 - Training, Software Tools, PyHEP
- Last day discussion of funding initiatives
 - IRIS (UK), IRIS-HEP (US), IDT-UM (DE)

HSF Working Groups

- The Roadmap established what challenges the community faced
 - But it did not spell out *how* to face them in detail
- HSF had adopted a model of <u>working groups</u> from its earliest days
 - These were open groups of people in the community, motivated enough to organise around a common topic, usually at their own initiative
- This model seemed a good one for moving forwards on the key topics
 - We were a little more formal this time around
 - Call for nominations from the whole community, then search committee
 - Significant engagement from LHC experiments and beyond, e.g. Belle II
- The HSF's role is one of an information conduit and meeting point
 - Report on interesting and common work being done
 - Forum for technical comments and discussion
 - Encourage cooperation across experiments and regions

Detector Simulation WG...

- A major consumer of LHC grid resources today
 - Experiments with higher data rates will need to more simulation
- Faster simulation, with no or minimal loss of accuracy, is the goal
 - Range of techniques have been used for a long time (frozen showers, paramtric response)
 - Key point is deciding when it's good enough for physics
- Machine learning lends itself to problems like this
 - Calorimeter simulations usually targeted
 - Variational Auto Encoders (VAEs) attempt to compress the data down to a 'latent space' - can be randomly sampled to generate new events
 - Generative Adverserial Networks (GANs) train two networks, one to generate events, the other to try to classify as real/fake
 - R&D on lifecycle integration into Geant4 is starting...

LHCb ECal simulated with G4, generated with GAN [F. Ratnikov]

Energy = 65 GeV

ATLAS VAE and GAN cf. Geant4 simulation [ATL-SOFT-PUB-2018-001.]

... Detector Simulation WG

• Technical improvement programme helps (and helps everyone)

- GeantV R&D modernises code and introduces vectorisation
 - Speed-ups observed
 - Vectorisation introduces small gains
 - Code modernisation seems to help a lot
 - Full report on this R&D after the summer
- Geant4 now have a new R&D working group that will take studies forward
- Some studies of running Geant4 on GPUs have begun
 - US Exascale Computing Project is funding this, motivated by upcoming exaflop supercomputers
 - 90-95% of FLOP capacity in GPUs
 - However, migration of physics code is an incredibly tricky business
 - This would be a long haul, but a huge achievement for all of HEP if we succeed...

Reconstruction and Software Triggers WG

- Software triggers close to the machine required to deal with tremendous rates and to get sufficient discrimination
 - Pressure to break with legacy code is high
 - Lots of experimentation with rewriting code for GPUs
 - In production for ALICE (since Run2)
 - Advanced prototypes for CMS (Patatrack) and LHCb (Allen)
- Orienting the design around the data (optimal layouts) is critical
 - This was a key topic identified at JLab HOW Workshop, lots of ongoing discussions since then (including last week meeting, <u>https://indico.cern.ch/event/823263/</u>)
- Real Time Analysis becomes more and more important
 - Produce analysis useful outputs as part of the trigger decision
 - LHCb Turbo strategy here is well known
 - ATLAS and CMS also doing some analysis this way also

Data Analysis WG

- Improve analysis ergonomics how the user interacts with the system to express their analysis
 - Streamline common tasks
 - Handle all input datasets; Corrections and systematics
 - Compute per event and accumulate; Statistical interpretations
 - **Declarative models**, building on ROOT's RDataFrame
 - Say *what*, not *how* and let the backend optimise
 - E.g. split and merge, GPU execution
- Notebook like interfaces gain ground, as do containers - lots of high level Python tools
 - Links strongly to PyHEP group
- Interest in data science tools and machine learning is significant for this community inspiring new approaches (e.g. Scikit-HEP (uproot, awkward array), Coffea, IRIS-HEP)
 - This is an ecosystem into which HEP can contribute
- Links to DOMA and facilities through interest in dedicated analysis clusters

Many analysis frameworks, multiple per experiment, not well generalised

```
# * Jet select/cleaning against loose leptons , jet pt > 25 , jet id
flow.DefaultConfig(jetPtCut=25, jetIdCut=0, jetPUIdCut=0)
flow.SubCollection("CleanJet", "Jet", '''
Jet_pt > jetPtCut &&
Jet_jetId > jetIdCut &&
Jet_puId > jetPUIdCut &&
(Jet_LeptonIdx==-1 || Jet_LeptonDr > 0.3)
''')
```

Event Generation WG...

- Event generators are the start of the simulation chain
 - At the LHC Run1 only leading order generators were used
 - With Run3/4, higher order generators become much more important and are much more costly to run
- HSF/LPCC workshop in November brought theory and experiment together to look at computing challenges of event generation
 - This was the first workshop of its kind
- Working group tackling technical challenges
 - Setting a baseline for further comparisons
 - Support for technical improvements (e.g. thread safety)

11

... Event Generation WG

- Better understanding of ATLAS/CMS CPU usage of generators
 - A lot of CMS usage is folded into combined jobs (evgen+sim+reco)
 - \circ $\,$ Overall usage not as different as previously thought: ^x2-3 rather than x10 $\,$
 - Insight into different setups and strategies
 - ATLAS filter events more aggressively (increases CPU time, but better populates phase space)
 - Sherpa CPU per event can be improved by x2-3 with a different scale factor choice
- Document summarising these findings is in progress
 - Establish a good baseline of understanding

Event Generation on HPCs and GPUs

- Considerable progress on efficient use of large clusters of machines for event generation
 - Targeting HPC resources in particular
 - Scaling up to 2048 nodes
 - Enables simulation of W/Z+9j with Sherpa/Pythia
- Porting to other architectures
 - Could be very suitable code to do this with (smaller, self contained code bases, numerically intensive)
 - Will also follow up with MadGraph team on their GPU port of some pieces of this generator... but this looks far away from being a working production setup "out of the box"

Software Nuts and Bolts

HSF Packaging Working Group Report

[HSF-TN-2016-03]

L. Sexton-Kennedy¹, B. Hegner², B. Viren³ $\label{eq:result} {}^{1}{\it FNAL}, {}^{2}{\it CERN}, {}^{3}{\it BNL}$

• Software Tools WG

- Active group promoting best practice for correctness and performance
- There has been a revolution in adopting best open source practice in recent years
 - git, GitHub, GitLab, CMake, merge requests, code review, ...
- Topical meeting on a new monitoring tool (Trident, from CERN IT)
- Best practice in use of static analysers and performance monitoring
- Packaging WG
 - Key component to build an ecosystem and allow to assemble modules as needed
 - Need a software stack, incorporating many components from the open source world and HEP community
 - This touches deeply on license and license combinations
 - Preference for tools that are not home grown and have a wider support base
 - Active protyping activities: Spack (LBNL) in use in Neutrino experiments + FCC, Conda for analysis SW delivery (ROOT for example)

Frameworks and Integration

- Increasingly heterogeneous world requires advanced software support infrastructure
 - Software frameworks support use of different devices as well as insulate developers from many of the details of concurrency and threading models
 - Adapt to the new heterogeneous landscape
 - Latency hiding is critical to maintaining throughout
 - Framework development has traditionally been quite fragmented, but new experiments should offer a chance to increase convergence
 - Better to start off together than try to re-converge later (iLCSoft, LArSoft examples of success, albeit without concurrency; Gaudi for LHCb, ATLAS)
 - E.g. ALFA for ALICE and FAIR experiments
- New HSF working group being established now (draft mandate)
 - Currently in the convenor nomination phase

Cartoon of a single job, processing multiple events (colours) through different modules (shapes)

Google Summer of Code / Season of Docs

- 34 slots granted by Google
 - Up 5 from last year
 - One project was disqualified, so we could use 33 slots
- Google have also launched a programme to improve the quality of documentation
 - Supports a technical writer for open source projects
 - We are exploring this with proposals from ROOT and Rucio
- 3 administrators: 2 from CERN/SFT, 1 external (LAL)
 - Same admins for both programs

HEP Software Training

Training and Careers

- Many new skills are needed for today's software developers and users
- Base has relatively uniform demands
 - Any common components help us
- LHCb StarterKit initiative taken up by several experiments, sharing training material
 - Links to 'Carpentries' being remade (US training projects) up the level!
- New areas of challenge
 - Concurrency, accelerators, data science
 - Need to foster new C++ expertise (unlikely to be replaced soon as our core language, but needs to be modernised)
- Careers area for HEP software experts is an area of great concern
 - Need a functioning career path that retains skills and rewards passing them on
 - Recognition that software is a key part of HEP now

Raising Software's Profile and ESPP

- HSF contributed a paper to the European Strategy Update process
 - Considerable HSF discussion and input to talk on Software R&D at Granada
- Mentioned as a critical issues in Granada summary talk on Detectector R&D and computing
 - **Training** how to equip developers with the correct skills
 - From starting students to refresh for experienced people
 - Careers
 - Establish a viable long term career path for HEP software experts: involving them with training activities is helpful, especially through universities
- Discussions started on meaningful ways to develop this activity, involving computer scientists and software engineers
 - Make links with other data intensive sciences with similar challenges
 - E.g. dark matter and astro-particle have expressed interest in this area

Next WLCG/HSF Workshop (Adelaide)

- Date: week-end before CHEP, November 2-3 (noon to noon)
 - \circ $\;$ Will be officially announced as part of the next CHEP bulletin
- Focused on analysis: From Future Facilities to Final Plots
 - Not the usual format reviewing many things as it will be a short meeting
- Program committee (main members): WLCG (lan B. + C.), HSF (M. Jouvin, G. Stewart), DOMA project (S. Campana), HSF Analysis WG (P. Laycock)
 - Main topics identified
 - Working on session definitions to ensure that they are relevant to both HSF and WLCG: don't want 2 workshops in one...
- CHEP will also cover many of the issues tackled by HSF

Conclusions

• We have a wide ranging and ambitious physics programme in HEP and in associated disciplines

- Our experiments are highly data intensive and require high quality software and computing
- The landscape for software is becoming ever more challenging
 - Working together on common problems is a requirement for efficiency and from our F.A.
- HSF increasing communication between experiments
 - Working groups are active and meeting regularly
 - Forum for exchange of ideas
 - We hope that common development areas will arise from this
- HSF also recognised as playing a role as an advocate for software
 - \circ $\;$ This raises the profile of software as a critical activity
 - But progress on training and careers really is needed

HL-LHC is a challenge and also a great opportunity to improve HEP software

Useful Links

- HSF web site: <u>https://hepsoftwarefoundation.org</u>
- ESPP Open Workshop, Granada, May 2019
 - HEP Computing Software R&D, G. Stewart: https://indico.cern.ch/event/808335/contributions/3367988/attachments/1843865/3025660/ep psu-software-rd.pdf
 - Summary on Instrumentation and Computing: https://indico.cern.ch/event/808335/contributions/3365081/attachments/1845683/3028368/su mmary-instrumentation-computing.pdf
- Software update report @LHCC, G. Stewart, June 2019
 - https://indico.cern.ch/event/754732/contributions/3127504/attachments/1855646/3047775/Soft ware_Update_2019-06.pdf

Backup Slides

Decreasing Returns over Time

- Conclusion is that diversity of new architectures will only grow
- Best known example is of GPUs

Amdahl's Law \Rightarrow 2X/6 years (12%/year) $_{ullet}$ End of Dennard Scaling \Rightarrow Multicore 2X/3.5 years (23%/year) \uparrow CISC 2X/2.5 years RISC 2X/1.5 years (22%/year) (52%/year) 100,000 Performance vs. VAX11-780 10,000 1,000 100 10 1980 1985 2005 2015 1990 1995 2000 2010

Control		ALU .	ALU
	4	ALU	ALU
Cache			
DRAM			

End of the Line \Rightarrow 2X/20 years (3%/yr)

[link]

Drivers of Technology Evolution

- Low power devices
 - Driven by mobile technology and Internet of Things
- Data centre processing
 - Extremely large clusters running fairly specialist applications
- Machine learning
 - New silicon devices specialised for training machine learning algorithms, particularly low precision calculations
- Exascale computing
 - Not in itself general purpose, but poses many technical problems whose solutions can be general - HEP pushed to use HPC centres, especially in US
- Energy efficiency is a driver for all of these developments
 - Specialist processors would be designed for very specific tasks
 - Chips would be unable to power all transistors at once: dark silicon is unlit when not used

Software Challenges and Opportunities

Concurrency

• The one overriding characteristic of modern processor hardware is concurrency

- SIMD Single Instruction Multiple Data (a.k.a. vectorisation)
 - Doing exactly the same operation on multiple data objects
- MIMD Multiple Instruction Multiple Data (a.k.a. multi-theading or multi-processing)
 - Performing different operations on different data objects, but at the same time
- Because of the inherently parallel nature of HEP processing a lot of concurrency can be exploited at rough granularity
 - Run many jobs from the same task in parallel
 - Run different events from the same job in parallel
- However, the push to highly parallel processing (1000s of GPU cores) requires parallel algorithms
 - This often requires completely rethinking problems that had sequential solutions previously, e.g. finding track seeds via cellular automata (TrickTrack library, CMS and FCC)

Heterogeneity

• There are a lot of possible parallel architectures on the market

- CPUs with multiple cores and wide registers
 - SSE4.2, AVX, AVX2, AVX512, Neon, SVE, Altivec/VMX, VSX
- GPUs with many cores; FPGAs
 - Nvidia (many generations often significantly different), AMD, Intel, ...
- In addition there are 'far out' architectures proposed, like Intel's Configurable Spatial Architecture
- Many options for coding, both generic and specific:
 - Cuda, TBB, OpenACC, OpenMP, OpenCL (→ Vulcan), alpaka, Kokkos, ...
- Frustratingly no clear winner, mutually exclusive solutions and many niches
 - One option for now is to isolate the algorithmic code from a 'wrapper' that targets a particular device or architecture approach of ALICE for their GPU/CPU code
 - Hiding details in a lower level library (e.g. VecCore) also helps insulate developers

Data Layout and Throughput

- Original HEP C++ Event Data Models were heavily inspired by the Object Oriented paradigm
 - Deep levels of inheritance
 - Access to data through various indirections
 - Scattered objects in memory
- Lacklustre performance was "hidden by the CPU and we survived LHC start
- In-memory data layout has been improved since then (e.g. ATLAS xAOD)
 - \circ \hfill But still hard for the compiler to really figure out what's going on
 - Function calls non-optimal
 - Extensive use of 'internal' EDMs in particular areas, e.g. tracking
- iLCSoft / LCIO also proved that common data models help a lot with common software development
- Want to be flexible re. device transfers and offer different persistency options
 - e.g. ALICE Run3 EDM optimised for message passing and the code generation approaches in FCC-hh
 PODIO EDM generator

Machine Learning

- Machine learning, or artificial intelligence, used for many years in HEP
 - Algorithms learn by example (training) how to perform tasks instead of being programmed
- Significant advances in the last years in 'deep learning'
 - Deep means many neural network layers
 - Fast differentiability and use of GPUs
- Rapid development driven by industry
 - Vibrant ecosystem of tools and techniques
 - Highly optimised for modern, specialised hardware

ML minimisation problem - do this minimisation with 10⁶ variables...

Machine Learning in HEP

- Better discrimination
 - Important input for analysis (see improvements with Higgs) Ο
 - Also used at HLT as inference can be fast (N.B. training can \bigcirc be slow!)
 - HEP analogies to image recognition or text processing
- Replace expensive calculations with trained output
 - E.g. calorimeter simulations and other complex physical processes
- There are significant opportunities here
 - Need to combine physics and data science knowledge
 - Field evolves rapidly and we need to deepen our expertise
- Integration into our workflows is not at all settled
 - Resource provision, efficient use, heterogeneity and programming models pose problems
 - Training deep models may require *significant* resources

Table 1 | Effect of machine learning on the discovery and study of the Higgs boson

Analysis	Years of data collection	Sensitivity without machine learning	Sensitivity with machine learning	Ratio of <i>P</i> values	Additional data required
$\frac{\text{CMS}^{24}}{H \rightarrow \gamma \gamma}$	2011-2012	2.2 σ , $P = 0.014$	2.7 σ , $P = 0.0035$	4.0	51%
$ATLAS^{43}$ $H \rightarrow \tau^+ \tau^-$	2011-2012	2.5 σ , $P = 0.0062$	3.4 σ , $P = 0.00034$	18	85%
ATLAS ⁹⁹ VH → bb	2011-2012	$1.9\sigma, P = 0.029$	2.5 σ , $P = 0.0062$	4.7	73%
$ATLAS^{41}$ $VH \rightarrow bb$	2015–2016	2.8 σ , $P = 0.0026$	3.0 <i>σ</i> , <i>P</i> = 0.00135	1.9	15%
CMS^{100} $VH \rightarrow bb$	2011-2012	$1.4\sigma, P = 0.081$	$2.1\sigma, P = 0.018$	4.5	125%

Machine learning at the energy and intensity frontiers of particle physics, https://doi.org/10.1038/s41586-018-

0361-2

