

Practical Reproducible Evaluation of Systems with Popper

Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn

University of California, Santa Cruz

Independently validating experimental results in the field of computer systems research is
a challenging task. Recreating an environment that resembles the one where an experiment
was originally executed is a time-consuming endeavour. In this white paper, we present
Popper [1], a convention (or protocol) for conducting experiments following a DevOps [2]
approach that allows researchers to automate the re-execution and validation of an
experiment.

Introduction

Over the last decade software engineering and systems administration communities (also
referred to as DevOps) have developed sophisticated techniques and strategies to ensure
“software reproducibility”, i.e. the reproducibility of software artifacts and their behavior
using versioning, dependency management, containerization, orchestration, monitoring,
testing and documentation. The key idea behind the Popper Convention is to manage every
experiment in computation and data exploration as a software project, using tools and
services that are readily available now and enjoy wide popularity. By doing so, scientific
explorations become reproducible with the same convenience, efficiency, and scalability as
software reproducibility while fully leveraging continuing improvements to these tools and
services. Rather than mandating a particular set of tools, the convention only expects
components of an experiment to be scripted (see Fig. 1). There are two main goals for
Popper:

1. It should be usable in as many research projects as possible, regardless of their
domain.

2. It should abstract underlying technologies without requiring a strict set of tools,
making it possible to apply it on multiple toolchains.

A DevOps Approach to Carrying Out Experiments

A common generic workflow for experiments with a computational component is the one
shown below. Although there are some projects or papers that don't fit this description we
focus on this model since it covers a large portion of experiments out there. The
implementation and documentation of an experiment, is commonly done in an ad-hoc way
(custom bash scripts, storing in local archives, etc.).

Figure 1: A generic experimentation workflow. The analogy of a lab notebook in
experimental sciences is to document an experiment's evolution. This is rarely done and, if
done, usually in an ad-hoc way (an actual notebook or a text file).

The idea behind Popper is simple: make an article self-contained by including in a code
repository the manuscript along with every experiment's code, orchestration, inputs,
parametrization, results and validation. To this end we propose leveraging state-of-the-art
technologies and applying a DevOps approach to the "implementation" of an article.

Figure 2: A generic experimentation workflow viewed through a DevOps looking glass. The
logos correspond to commonly used tools from the DevOps toolkit. Scripts corresponding
to each stage are stored in a version control repository, whose commit log resembles a lab
notebook .

Popper maps the components of an experimentation workflow to the engineering
best-practices that are commonly applied in open source software projects. Popper is
followed by:

1. At each stage of the experimentation process, picking one or more tools from the
DevOps toolkit (see below).

2. Creating scripts for each of these tools and store them in a version control repository.
3. Documenting changes to an experiment (as well as results) in the form of commits to

this repository.

If, from the inception of an article, a researcher makes use of the DevOps toolbox (e.g.,
version-control systems, lightweight OS-level virtualization, automated multi-node
orchestration, continuous integration and web-based data visualization), then re-executing
and validating an experiment becomes practical.

Popper-compliant Experiments

We say that an experiment is Popper-compliant if its code, orchestration, dependencies,
results, parameterization and validation are self-contained . By self-contained, we mean
available in a code repository with dependencies available in artifact and data repositories.
If resources are available, we can execute a Popper-compliant (or "popperized")
experiment can be executed in its entirety. Additionally, the commit log becomes the lab
notebook, which makes the history of changes made to it available to readers, an invaluable
tool to learn from others and "stand on the shoulder of giants". A "popperized" experiment
also makes it easier to advance the state-of-the-art, since it becomes easier to extend

existing work by applying the same model of development in OSS (fork, make changes,
publish new findings).

A list of Popperized experiments is available in the Popper Templates repository. See below
for how to use the Popper-CLI tool to easily explore the templates repository and add
experiments to a paper repository.

Popper-compliant Tools

While Popper applies to a wide variety of toolchains, it is not universal. We generally
require tools to have two basic properties:

1. Referenceable assets. Ability to associate IDs to assets (code, binaries, configuration
and data).

2. Scriptability. The tool in question has to be amenable to automation (scriptable). In
general, given a high-level, human-readable script (or asset ID), the tool should be able
to act upon it.

The notion of Popper-compliance closely resembles the high-level guidelines of the
Twelve-Factor App, re-purposed for an academic setting, i.e. we aim for the Twelve-factor
Experiment .

We maintain a list of "Popperized" experiments at
http://github.com/systemslab/popper. We also provide a CLI tool for researchers to
bootstrap a project that follows the convention, as well as a wiki with guides and examples.
Projects that follow the convention can make use of our http://falsifiable.us service
to automatically validate an experiment.

Listing 1: Interacting with the Popper-CLI tool.

$ cd mypaper-repo
$ popper init
-- Initialized Popper repo

$ popper experiment list
-- available templates ---------------
ceph-rados proteustm mpip
cloverleaf gassyfs zlog
spark-bench torpor malacology

$ popper add torpor myexp
-- Added torpor experiment to mypaper-repo

$ popper check myexp
-- SUCCESS - myexp is Popper-compliant

https://github.com/systemslab/popper/master/tree/templates
http://12factor.net/

Use Case

The following describes a series of steps to bootstrap a data science paper that follows the
Popper convention using the Popper-CLI tool. Popper in this scenario is followed so that
datasets are properly referenced and analysis scripts used to process data (as well as any
output data) are versioned and associated to an article. While in this guide we use LATeX,
Docker, dpm and Jupyter, any of these can be swapped for equivalent tools. To learn more
about how to use other tools and how the Popper convention is toolchain-agnostic, see
here.

Requirements:

• git
• docker
• popper-cli

Initialize a Popper Repository

Our Popper-CLI tool assumes a git repository exists. To create one:

mkdir mypaper
cd mypaper
git init
echo "# My Paper Repo" > README.md
git commit -m "First commit of my paper repo."

See here for a list of good resources for learning git. Once a git repo exists, we can invoke
the popper-cli tool:

cd mypaper
popper init

The above creates a .popper.yml file that contains configuration options for the CLI tool.
This file should be committed to the paper repository (git repo we create above). For an
explanation on the folder structure of a Popper repo, see here.

Adding a New Experiment

The Popper convention outlines how to make it practical to generate reproducible
experiments. As part of our effort, we maintain a list of experiment templates that have
been "popperized" (see here for an explanation of what constitutes a Popper-compliant
experiment). To see a list of available experiments:

popper experiment list

https://github.com/systemslab/popper/wiki/Intro-to-Popper#popper-compliant-tools
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://github.com/systemslab/popper/releases
https://github.com/systemslab/popper/releases
https://help.github.com/articles/good-resources-for-learning-git-and-github/
http://getting-started/
https://github.com/systemslab/popper/wiki/Intro-to-Popper#popper-compliant-experiments

In order to add a new experiment, we refer to a template and assign a name to it. The
general invocation form is the following:

popper experiment add <template> <experiment-name>

For example, assume we want to analyze data from an experiment in the area of
meteorological sciences (a template created as part of the Big Weather Web project):

popper experiment cms-analysis myexperiment

This data analysis experiment consists of one dataset and a jupyter notebook. To retrieve
the dataset to the local machine:

cd experiments/myexperiment

docker run --rm -v `pwd`/datapackages:/datapackages \
 ivotron/dpm install /datapackages/air-temperature

NOTE: The above makes use of the dpm tool for managing datapackages. The tool doesn't support file:/// URLs
yet (until this issue gets resolved). In the meantime, to download the dataset from github, replace

/datapackages/air-temperature with https://github.com/ivotron/air-temperature.

To visualize and interact with the data analysis of this experiment:

cd experimetns/myexperiment
./visualize

The above opens a browser and points it to the notebook. In this example, the dataset used
by the notebook resides in the myexperiment/datapackages/ folder.

For this experiment we assume that input data has been externally generated, i.e. dataset
creation is not part of the experiment. Also, the analysis runs on a single machine. Other
types of data science projects might involve generating their input datasets and/or process
data in a cluster of machines. Popper still can be followed in these scenarios.

Adding More Datasets

Datasets are stored (or referenced) in the datapackages/ (or datasets/) folder of each
experiment, with one subfolder for each dataset. For examples datasets see here. To add or
reference a new dataset, one has to either provide a URL of the dataset, or inspect a the list
of datapackages available in a data repository using the dpm tool. Available repositories are
github, ckan and thredds.

NOTE: Support for THREDDS is not part of the official dpm client yet. Work is being done in this as part of the big
weather web project.

Once a dataset URL is available, one can install a package by doing

docker run --rm -v `pwd`/datapackages:/datapackages \
 ivotron/dpm install http://motherlode.ucar.edu:8080/thredds/bww/

http://bigweatherweb.org/
https://github.com/frictionlessdata/dpm
http://frictionlessdata.io/about/
https://github.com/frictionlessdata/dpm/issues/55
https://github.com/datasets
http://bigweatherweb.org/
http://bigweatherweb.org/

To display the info for a package, use the info command of dpm. For more info on how to
use dpm take a look at the official documentation.

Generating Image Files For Reference In Manuscripts

Assume we add a new type of analysis to the notebook and we want to generate an image.
For the notebook of our example (xarray-tutorial.ipynb of the jupyter-bww experiment),
we can generate a file for figure 2 (Line [45]). In Jupyter, we add a new cell below the
figure and type the following line:

plt.savefig('air-temperature.png',bbox_inches='tight', dpi=300)

Since the experiment folder is available in the filesystem that Jupyter has available to it, the
figure persists even after the Jupyter server exits. To automatically re-execute the analysis
and re-generate figures from a notebook, one can use the run-notebook script contained in
the jupyter-bww experiment:

cd myexperiment
./run-notebook

Documenting the Experiment

After we're done with our experiment, we might want to document it and add a paper. We
can use the generic article latex template or other more domain-specific one (available
here). To display the available templates we do popper paper list. In this example we'll
use the latex template for articles that appear in the Bulletin of the American
meteorological Society (BAMS):

popper paper add latex-ametsoc

Let's assume we will have a new section in the LATeX file where we describe our
experiment. We will make use of the figure that we generated in the previous section. We
can make the assumption that the experiments folder is available at the level of the latex
file, so we can reference the image directly. For example:

\begin{figure}[t]
 \includegraphics{experiments/myexperiment/air-temperature.png}\\
 \caption{Air temperature.}\label{f1}
\end{figure}

And to re-generate the PDF containing the new image:

cd paper
./build

https://github.com/frictionlessdata/dpm
https://github.com/Unidata/unidata-users-workshop/blob/master/notebooks/xray-tutorial.ipynb
https://github.com/systemslab/popper
http://journals.ametsoc.org/loi/bams
http://journals.ametsoc.org/loi/bams

Bibliography

[1] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror, R. Arpaci-Dusseau,
and A. Arpaci-Dusseau, Popper: Making Reproducible Systems Performance Evaluation
Practical , UC Santa Cruz, SOE-16-10, 2016.

[2] M. Hüttermann, DevOps for Developers , 2012.

