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1 The data analysis challenge of neutrino physics

The Particle Physics Project Prioritization Panel (“P5”) report [1] highlights the physics of
neutrino mass as one it it’s five Science Drivers for organizing the activities of high energy physics
(HEP). Because neutrino masses are so anomalously small, they may provide a window to the
highest energy scales in nature, allowing access to regimes far beyond what we may currently test
directly. Cornerstones of this program are the efforts to establish whether neutrinos and
antineutrinos oscillate differently (so-called “CP violation”) and to understand the nature and
ordering of the neutrino masses. Novel tools are needed to fully exploit the enormous amount of
data being generated now and to be produced in the future to address these programs.
Furthermore, neutrino experiments, especially in the large far detectors characteristic of
long-baseline experiments, are in the interesting position of having enormous data volumes, but
very few events in the flagship oscillation analysis. We face a serious problem not only in
developing algorithms capable of sifting through huge volumes of data, but we also must develop
algorithms that are maximally efficient to fully utilize the investments required to produce
neutrino interactions in far detectors.
The past several years have witnessed a revolution in computing and machine learning [2, 3].
Using new hardware advances, particularly more capable Graphics Processing Units (GPUs), and
the algorithms associated with “deep learning” (the use of neural networks with many hidden
layers), computers have surpassed humans in certain pattern recognition exercises, particularly in
computer vision and image recognition problems, but tremendous leaps are being made in many
endeavors. These techniques have clear application to HEP event reconstruction as modern
neutrino detectors are effectively imaging devices. Early results [4–6] indicate that deep learning
will significantly improve the physics reach at running neutrino experiments. There is even the
intriguing possibility to use deep learning and other forms of machine intelligence to discover
entirely new phenomena in our data, although this is still a speculative exercise.
While this paper will largely discuss deep learning in HEP from perspective of neutrino physics, it
is doubtlessly true that many of the items discussed apply just as well at colliders. Finding
common synergies between needs at neutrino, collider, and other HEP experiments will be an
important and valuable task in the very near future.
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2 Deep learning brought to bear

But many questions must be answered first to understand how to map deep learning technologies
into the particle physics domain. Almost all training for deep neural nets in HEP is done with
Monté Carlo - how do we train deep networks when the model (our simulation stack) contains
uncertainties? How do we understand what the network is learning - is it able to find
relationships hidden under the complex interplay between particles in the detector or is it merely
memorizing images? The high quality and large volume of simulation available in high energy
physics make this an excellent arena to study deep neural network behavior and optimization
while simultaneously expanding the reach of particle physics experiments.
While many problems in the HEP domain map onto known problems in the deep learning
community, some do not and we are often concerned about different metrics. As a community we
should push deep learning research to address HEP’s specific concerns. For example, we may be
willing to accept lower efficiency in favor of a more clearly understood uncertainty on that
efficiency. Additionally, outside of HEP the vast majority of deep learning applications, including
the image classification and object detection algorithms being adapted for HEP purposes, rely on
labeled sets of data for training. In contrast, the low statistics searches in HEP necessitate
training based on finely tuned simulations the community has spent decades developing. Early
attempts to collaborate betweent communities have already created papers of interest to both
HEP and DL communities[7], and hopefully mark the start of a wider trend.

2.1 Relationships to industry and academic computer science

Industry is having an enormous impact on deep learning. Some argue that large information
technology companies like Google are rebuilding themselves around it, making enormous
multi-billion dollar wagers that we will continue to see improving results [8]. What’s more,
industry and academic computer science have begun to share research space as for-profit
companies look to hire expertise as quickly as possible and must also allow their staff to publish
findings in academic journals in order to retain the best investigators. HEP physicists can take
advantage of significant investments being made by industry and academic computer science to
develop the most important software frameworks. Many leading frameworks have important
industrial sponsors. While Google has probably the most broadly used deep learning software
framework, TensorFlow [9, 10], companies like Amazon and Microsoft are hard at work on their
own libraries. Meanwhile frameworks like Caffe [11] and Theano [12] thrive in academic settings.
All three of TensorFlow, Caffe, and Theano are heavily used in HEP.
These frameworks will continue to improve without input from HEP, but it will be important for
our community to engage with these groups. The projects are open source and it will be
important to build relationships and trust with these groups so we can contribute code we need or
voice support for the inclusion of models that may be somewhat esoteric for industry in general.
For example, domain-adversarial neural nets (DANNs) [13] potentially provide an algorithmically
simple way of reducing model bias from inadequate physics modeling in the simulation we use for
training. We want to engage with the academic computer science community to stimulate
research like this and it will also be important to engage with deep learning framework authors to
ensure that otherwise esoteric features like DANNs remain supported and efficient.
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2.2 Data formatting

Data formatting as a common, critical need across all of HEP. Deep learning frameworks are
designed to consume data in very specific formats, for example HDF5 [14] and LMDB [15], with a
focus almost entirely on quickly transferring data to a GPU. This is because one of the largest
bottlenecks when using GPUs is getting data onto the GPU fast enough to keep up with the rate
of computation. Currently, HEP experiments primarily use ROOT [16] for persistent storage and
ROOT I/O is not optimized for high transfer rates to a GPU or some other co-processor card.
Experiments are forced to develop ad-hoc ways of preparing samples and the community as a
whole could benefit from common, high-quality tools that allowed us to fork versions of our data
into formats that deep learning frameworks could consume in a fashion that was effort and
computation efficient. We could also benefit from tools and developments that made it simpler for
deep learning frameworks to more transparently consume data from HEP event stores directly,
even at the cost of efficiency in circumstances where the convenience strongly outweighed
performance concerns (for example, in the last stages of user analysis).

2.3 Democratizing access and exploiting the most powerful computation engines

Addressing the full menu of questions is only possible with leadership computing, but this itself is
a process full of questions. What is the optimal way to conduct deep learning analysis on high
performance computing (HPC) facilities? How do we make the process of defining a problem and
submitting analysis jobs to HPC facilities widely accessible to the experiments? Finally, how do
we give physicists the tools to scale up analyses from small test clusters to leadership class
facilities (LCFs)? Many large machines (for example, Titan at Oak Ridge National Laboratory)
prefer users that can utilize the entire machine at once. But there is a dearth of dedicated
resources in HEP institutions between very small clusters and machines the size of Titan (over
18,000 nodes), and scaling to machines of that size is a non-trivial exercise. Cloud resources (e.g.
Amazon AWS and Google Cloud) exist and might fill this gap, but historically computing
resources like these have not fit well in HEP funding models or workflows.

2.4 Investing in knowledge transfer and training

One of the topics of common interest for all HEP experiments is that of knowledge transfer. The
use and development of Machine Learning in HEP is made possible by scientists whose skill set
combines physics and machine learning tools. However, as with all computational tools used in
the field, some training is necessary for every generation of new scientist to fully exploit the
benefits of employing said tools. In many cases it is up to individual experiments to develop and
organize training, thus, utilizing manpower and potentially duplicating content and resources
which already exist elsewhere in the field. A concerted effort in training young scientists in the
use and development of machine learning tools would provide them with the skills needed to
utilize them while relieving experiments from the burden of spending time and resources in
knowledge transfer of common tools.

3 Conclusions

Understanding deep learning as it is applied to particle physics will help to fully realize the
investments being made to pursue the most fundamental questions in nature. Strategic
investments in the technology, understanding what makes HEP similar to and different from
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industrial and other academic avenues of research, and community-wide efforts to leverage our
intellectual and financial resources efficiently are all crucial ingredients in this effort. Even under
conservative assumptions about the trajectory for future improvements in deep learning, this will
be an important technology for analyzing data at HEP experiments, and perhaps in many other
tasks as well, in the years to come. But to fully realize those benefits it will important for us to
engage with the creation of deep learning software, to build new relationships with the academic
computer science community, develop common tools for data formatting and accessing deep
learning codes, develop a pathway onto HPC facilities that all physicists can use, and find efficient
ways to build knowledge and expertise within the field.
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