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1 Introduction

The Matrix Element (ME) Method [1–4] is a powerful technique which can be utilzed for measurements of
physical model parameters and direct searches for new phenomena. It has been used extensively by collider
experiments at the Tevatron for SM measurements and Higgs boson searches [5–10] and at the LHC for measure-
ments in the Higgs and top quark sectors of the SM [11–17]. The ME method is based on ab initio calculation
of the probabilty density function P of an event with observed final-state particle momenta x to be due to a
physics process ξ with theory parameters α. One can compute Pξ(x|α) by means of the factorization theorem
from the corresponding partonic cross-sections of the hard scattering process involving parton momenta y and
is given by

Pξ(x|α) =
1

σfiducial
ξ (α)

∫
dΦ(yfinal) dx1 dx2

f(x1)f(x2)

2sx1x2
|Mξ(y|α)|2 δ4(yinitial − yfinal) W (x,y) (1)

where and xi and yinitial are related by yinitial,i ≡
√
s

2 (xi, 0, 0,±xi), f(xi) are the parton distribution functions,√
s is the collider center-of-mass energy, σfiducial

ξ (α) is the total cross section for the process ξ (with α) times
the detector acceptance, dΦ(y) is the phase space density factor, Mξ(y|α) is the matrix element (typically at
leading-order (LO)), and W (x,y) is the probability density (aka ”transfer function”) that a selected event y
ends up as a measured event x.

One can use calculations of Eqn. 1 in a number of ways to search for new phenomena at particle colliders.
For measurement of model parameters α, one would maximize the likelihood function for observed events L(α)
given by

L(α) =
∏
i

∑
k

fkPξk(xi|α) (2)

where fk are the fractions of (non-interfering) processes contributing to the data. For new particle searchres,
one can (using Bayes’ Theorem [18]) compute for a hypthosized signal S the probability P (S|x) given by

P (S|x) =

∑
i βSi
PSi

(x|αSi
)∑

i βSi
P(x|αSi

) +
∑
j βBj

P(x|αBj
)

(3)

where, Si and Bj , denote all signal and background processes relevant to the considered phase space and β are
the a priori expected process fractions. According to the Neyman-Pearson Lemma [19], Eqn. 3 is the optimal
discriminant function for S in the presence of B and can be used to extract a signal fraction in the data.

2 Advantages over Training-based Methods

As a multivariate analysis approach, the ME method brings in several unique and desirable features, most
notably it (1) does not require training data being an ab initio calculation of event probabilities, (2) incorporates
all available kinematic information of a hypothesized process, including all correlations, and (3) has a clear
physical meaning in terms transition probabilities within the framework of quantum field theory.
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3 Limitations of ME Method with Current Techniques

One drawback to the ME Method is that it has traditionally relied on LO matrix elements, although nothing
in principle limits the ME method to LO calculations. Techniques that accomodate initial-state QCD radiation
within the LO ME framework using transverse boosting and dedicated transfer functions to integrate over the
transverse momentum of initial-state partons have been developed [20]. Another challenge is development of
the transfer functions which rely on tediously hand-crafted fits to full simulated Monte-Carlo events.

The most serious difficulty in the ME method, and the one which has limited its applicability to searches for
beyond-the-SM physics and precision measurements at collider experiments, is that it is very computationally
intensive. If this limitation could be overcome, then it would enable more widespread use of ME methods for
analysis of LHC data. This could be particularly important for extending the new physics reach of the HL-LHC
which will be dominated by increases in integrated luminosity rather than center-of-mass collision energy.

Accurate evaluation of Eqn. 1 is computationally challenging primarily for two reasons: (1) it involves
high-dimensional integration over a large number of events, signal and background hypotheses, and systematic
variations and (2) it involves sharply-peaked integrands1 over a large domain in phase space. In reference
to point (1), the matrix element Mξ(y|α) in the method involves all partons in the n → m process, so
when the 4-momentum of particles are not completely measured experimentally (e.g. neutrinos), one must
integrate over the missing information which increases the dimensionality of the integration. In reference to
point (2), a clever technique to re-map the phase space in order to reduce the sharpness of integrate in that
space in an automated way (MADWEIGHT [21]) is often used in conjunction with a matrix element calculation
package (MADGRAPH aMCNLO [22]). In practice, evaluation of definite integrals by the ME approach invokes
techniques such as importance sampling (see VEGAS [23, 24] and FOAM [25]) or recursive stratified sampling
(see MISER [26]) Monte Carlo integration. Acceleration of some of these techniques on modern computing
architectures has been achieved, for example concurrent phase space sampling in VEGAS on GPUs.

4 Sustainable ME Method using Deep Learning

Despite the attractive features of the ME method and promise of further optimization and parallelization of the
evaluation of Eqn. 1, the computational burden of the ME technique will continue to limit is range of applicability
for practical data analysis without new and innovative approaches. This is especially true when one considers
the process of producing a physics publication which involves many selection, sample and systematic iterations
for which ME calculations are required. The primary idea put forward in this Section is to utilize modern
machine learning techniques to dramatically speed up the numerical evaluation of Eqn. 1 and therefore broaden
the applicability of the ME method to the benefit of the HL-LHC physics program.

Applying neural networks to numerical integration problems is plausible but not new (see [27–29], for
example). The technical challenge is to design a network which is sufficiently rich to encode the complexity of
the ME calculation for a given process over the phase space relevant to the signal process. Deep Neural Networks
(DNNs) are stong candidates for networks with sufficient complexity to achieve good approximation of Eqn. 1,
possibly in conjunction with smart phase-space mapping such as described in [21]. Promising demonstration
of the power of Boosted Decision Trees [30, 31] and Generative Adversarial Neural Networks [32] for improved
Monte Carlo integration can be found in [33]. Once a set of DNNs representing of definite integrals of the form
of Eqn. 1 to good approximation are generated, evaluation of the ME method calculations via the DNNs will
be very fast. These DNNs can be throught of as preserving the essence of ME calculations in a way that allows
for fast forward execution. The net result is that the DNNs can enable the ME method to be both nimble and
sustainable, neither of which is true today.

5 Example Analysis Flow

The overall strategy is to do the expensive full ME calculations as infrequently as possible, ideally once for DNN
training and once more for a final pass before publication, with the DNNs utilized as a good approximation in
between. A future analysis flow using the ME method with DNNs might look something like the following: One
performs a large number of ME calculations using a traditional numerical integration technique like VEGAS or
FOAM on a large CPU resource like an HPC, Cloud or the Grid, ideally exploiting acceleration on many-core
devices like GPUs or even FPGAs. The DNN training data is generated from the phase space sampling in
performing the full integration in this initial pass, and DNNs are trained either in situ or a posteriori. The
accuracy of the DDN-based ME calculation can be assessed through this procedure. As the analysis develops and
progresses through selection and/or sample changes, systematic treatment, etc., the DNN-based ME calculations
are used in place of the time-consuming, full ME calculations to make the analysis nimble and to preserve the

1a consequence of imposing energy/momentum conservation in the processes

2



Sustainable Matrix Element Method through Deep Learning HSF-CWP-018

ME calculations. Before a result using the ME method is published, a final pass using full ME calculation would
likely be performed both to maximize the numerical precision or sensitivity of the results and to validate the
analysis evolution via the DNN-based approximations.

6 Roadmap

There are several activities which are proposed to further develop the idea of a Sustainable Matrix Element
Method. The first is to establish a cross-experiment group interested in developing the ideas presented in this
Section, along with a common software project for ME calculations, for example in the spirit of [34]. Given
the nature of the challenges for a sustainable ME method, this is area which is very well-suited for impactful
collaboration with computer scientists and those working in machine learning, so effort should be placed in
establishing those connections. Using a few test cases (e.g. tt̄ or tt̄h production), evaluation of DDN choices
and configurations, developing methods for DNN training from full ME calculations and direct comparisons
of the integration accuracy between Monte Carlo and DNN-based calculations should be undertaken. More
effort should also be placed in developing compelling applications of the ME method for HL-LHC physics. In
the longer term and after successfully demonstrating the value of the methods on a few test cases, we propose
exploring the possibilty of Sustainable-Matrix-Element-Method-as-a-Service (SMEMaaS) where shared software
and infrastructure could be used through a common API.
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