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Abstract 

This document lays out a blueprint for a column-oriented data management system 

established over ROOT to support improved organization and layout of HEP datasets and 

more efficient HEP analysis.   

Introduction 

Although most High Energy Physics (HEP) datasets are converted into tabular structures 

(“ntuples” or “data summary tables”) in the final stages of analysis, the general-use Analysis 

Object Datasets (AOD) prepared centrally for the hundreds or thousands of members of 

each collaboration must have a hierarchical structure . HEP events (snapshots of a collision 1

or fixed-target interaction) contain particle tracks, calorimeter deposits, and other signals, 

which are reconstructed as arbitrarily-many particle objects with attributes such as 

momentum, charge, isolation with respect to other particles, etc.  Nested hierarchies are 

best explored through containment and cross-linking types of operations.  

1  We reserve the word “hierarchical” for nested data structures with arbitrary-length lists. 
Nesting of fixed-size objects, such as the four components of particle momentum, is merely 
a semantical convenience, not a structural necessity. 

 

 



 
 

Traditionally, AOD datasets have been stored as C++ objects, serialized by the ROOT 

framework into ROOT files. The features of this format were implemented in response to 

physics needs: from flat tables to user-customizable object serializations to standardized 

object serializations for most C++ types, and from row-wise representations to columnar 

representations. In this document, we refer to objects of homogeneous type (such as HEP 

events) as the “rows” of the data and their named, typed attributes as “columns.” A 

“row-wise” layout stores whole objects contiguously, with all attributes of a given object in 

close proximity within the file or byte stream, while a “columnar” layout stores all values of 

a given attribute contiguously, such that a single object is split across the file or byte 

stream. 

This columnar layout is a crucial feature of the ROOT file format for HEP data. Typical data 

analysis procedures access only a few types of particles from each event and only a few 

attributes from each particle object. A columnar layout minimizes the number of disk pages 

that need to be touched to fetch the data. Furthermore, splitting data into columns allows 

for each attribute to be separately compressed, which leads to higher compression ratios 

because a single attribute’s distribution has lower entropy than all the attributes of a 

complex object. Columnar, hierarchical data has become a staple of HEP datasets years 

before Google’s famous Dremel paper (independently) introduced this concept to the big 

data world, as well as the Parquet file format that was based on Dremel. 

While ROOT has adopted the state-of-the-art layout to store nested hierarchical datasets, it 

suffers from translating objects into the nested columnar layout in a variety of languages. 

Currently, ROOT’s  object serialization is bound to the C++ type system, making it unclear 

how to translate certain objects into other languages such as Python and Scala which are 

increasingly being used for analysis. In an effort to optimize storage, HEP collaborations 

have customized the serialization of some of their data types, which reintroduces the 

problem that ROOT serialization was intended to solve: custom software is needed to read 

the data. Custom software exacerbates the problem of data preservation. 

Binding the serialized data’s schemas to C++ types created another problem: versioning 

those data types. One of ROOT’s strengths is that it has a built-in system for versioning 

class definitions and gracefully filling new classes with old data (known as “schema 
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evolution”). However, this wouldn’t even be a problem if objects were not bound to C++ 

classes. 

Being an evolving format with backward compatibility, ROOT serialization/deserialization 

has some incidental limitations and inefficiencies. Variable-length structures cannot be split 

more than one level deep. Counters for variable-length structures are duplicated for every 

attribute of a class. Class version numbers are repeated for all objects in a column, despite 

the fact that they cannot change within the column. Columns are partitioned into pages 

(“baskets”) that aren’t required to line up at regular intervals (“clusters”), though read-out is 

more efficient when they do. Each of these could be improved by incremental updates and, 

in some cases, forward compatibility breaks. 

However, a more basic issue cannot be addressed without a fundamentally new method of 

data management: each self-contained ROOT file binds a fixed set of particles and 

attributes together as a granular unit. ROOT’s internally columnar layout is a step toward 

breaking this unit, in that analysis functions can selectively read the columns they want, 

even over a network (XRootD), but storing data and persistently caching it at local sites is 

still performed on a per-file basis, taking all columns within the file, regardless of whether 

they are all needed---this defeats the very purpose of a column-oriented file system that 

ROOT provides.  

For this reason, HEP collaborations and analysis groups go to great lengths to minimize the 

number of bytes per event in their data structures (“data tiers”), often making sacrifices to 

do so. For instance, CMS’s MiniAOD, NanoAOD, informal Bacon, Panda, Cms3, TreeMaker, 

and ATLAS’s derived DxAODs all represent different selections of columns that can be used 

by different subsets of the collaboration. Often, a critical quantity for one analysis is 

excluded from a data tier so that the resulting files are small enough to be convenient for 

other analyses. Since ROOT files are self-contained, each selection of columns (“slimming”) 

and selection of events (“skimming”) must be a separate copy on disk. The smaller the files 

are, the more one needs. 

In this document, we describe a new method of data management in which a partitioned 

column of data is the fundamental unit. We describe a simplified splitting/serialization 

procedure within an abstract type system, accessible to any language or data framework, 

which can be applied to any hierarchical data. These data may represent HEP events or 
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auxiliary data, such as lookup tables, calibration constants, or machine learning models, 

some of which aren’t even lists at their topmost level. We also show how this system can be 

used within a centralized service to slim and skim data without any copying, and can be 

projected for specific analysis needs without multiplying data formats. Finally, we show how 

this data representation provides two new features, never before available to the HEP 

community but known to increase the efficiency of databases: zero-deserialization scanning 

and database-style indexing. 

Columnar access as a first-class citizen 

What we are advocating is to present column partitions as the fundamental unit of data 

management for HEP end-user analysis (not reconstruction). These column partitions 

would become first-class citizens in the same sense that files are today: either as 

single-column files or more likely as binary blobs in an object store. We again note that 

columns are a first-class citizens in the ROOT file system. However, appropriate data 

management and analysis software that leverages this capability is missing.  In a mid-size 

data organization, columnar access can be enabled using column-oriented databases. FOR 

HEP the use of files and the adoption of ROOT file system is an invariant and thus 

general-purpose methods for columnar access must be developed. Such analysis software 

would retrieve columns individually, so that a single collection of columns could suit the 

needs of all analysis groups. Columns that are less frequently accessed may regress to 

colder storage, but they wouldn’t have to be selected upfront by data-tier designers. 

In ROOT terminology, columns are partitioned into “baskets,” where each partition 

represents an integer number of events (“entries”). All of the columns in a partition are 

called a “cluster”. ROOT baskets are typically kilobytes; we would prefer merging all baskets 

in a file or several files to make megabyte-sized column partitions. Megabytes per column 

partition is large enough to optimize high-throughput loops and small enough to manage 

thousands in memory at a time. ROOT has a mechanism for using data from different 

datasets (“trees”) as though they were parts of the same dataset (“tree friends”); this would 

be a similar idea, applied universally. 

Given a data store full of columns, datasets become loose associations among these 

columns, with metadata identifying a set of columns as mutually consistent and meaningful 
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for analysis. To share columns among datasets, they must be immutable, but HEP datasets 

have traditionally been viewed as immutable, anyway. This is an especially powerful 

mechanism for versioning a dataset, since the “replacement” of a column of data with 

updated data is now extremely lightweight: only the new column needs to be additionally 

stored, not a full copy. Slimming a dataset (removing columns) becomes a metadata-only 

operation and would be performed implicitly by executing code that touches a subset of 

particle attributes. 

If all data are accessed on a centralized server, skims (removing entries) can be “soft.” The 

result of a complicated filter can be stored as a list of selected entry indexes, and 

subsequent operations on the filtered data go through the entry index. In HEP, this 

technique is known as an “event list.” A soft skim reuses data and is therefore very 

lightweight, but has the disadvantage that the original (large) dataset must be available. 

This is feasible on a shared server, but not for a local copy. To download a copy or 

repartition the reduced data, a traditional “hard skim” would need to be generated. 

We should point out that this proposal goes beyond what is done in the big data industry— 

Parquet, Apache Arrow, and SparkSQL all store data as columns but bind those columns in 

files (Parquet’s case) or data structures (Arrow and SparkSQL) that are treated as units. We 

believe that the need for data with columnar granularity is driven by HEP, which deals with 

data that are more complex and more nested than most in the big data industry. It may 

someday find application in industry as well. 

Splitting hierarchical data into columns 

It’s easy to see how a flat table can be converted from a row-wise to a columnar format: 

simply transpose the table in memory. The same is true for data structures containing 

fixed-size nested records, such as “particle” containing “energy” and “mass.” Replace the 

record types with primitives that have composite names, such as “particle.energy” and 

“particle.mass”, reducing the data structure to a flat table. 

For hierarchical data with arbitrary-length lists, it is less clear. If each “event” row has 

arbitrarily many “particles,” the “energy” and “mass” columns have a different number of 

elements for each row. We could store all “particle.energy” values in a columnar array, 

followed by all “particle.mass” values, but then we have lost the boundaries that separate 

 
5 HSF-CWP-019 



 
 

one event from the next. We need an additional “#particles” column, but this column has a 

different length than “particle.energy” and “particle.mass”, as there is exactly one 

“#particles” per event. 

Columnar splitting techniques 

There are at least five fundamentally different methods to split hierarchical data into 

columns (also known as “shredding”). 

The first of these, described above, flattens the attribute data and adds a counter that can 

reconstruct the original structure. It is the method used by ROOT, though only for one level 

of depth. It could be extended to allow lists of lists, or more likely, lists of records whose 

fields are lists, by introducing a separate counter column for each level of depth. 

This method cannot handle recursively defined types, such as a Tree type that contains a 

list of Tree children, because arbitrarily deep structures would require an unknown (until 

the data are observed) number of columns. It is also not suited for random access, since 

the index of the first particle in event 1000 can only be found by adding up all the 

“#particles” counts in the first 99 events. 

The second method, used by Apache Arrow and SparkSQL, replaces the counters with 

offsets. The offsets are simply cumulative sums of counts, but they permit random access: 

an item with coordinates (i, j, k) can be found via offset columns outer, middle, and 

inner as: 

inner[middle[outer[i] + j] + k] 

However, it is still not possible to represent recursively defined types. 

The third method, which roughly corresponds to normal form in SQL, adds an “event id” to 

the particle columns instead of adding a counter or offset to the events. Thus, all particles 

belonging to the first event have “event id” with value 1, all particles belonging to the 

second event have “event id” 2, etc. This tag is an attribute of the particle, just like energy 

and mass, so the particle data forms a flat, rectangular table, and the particle table has no 

intrinsic ordering (good for SQL, bad for random access). 
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This is particularly advantageous if the number of particles per event is so large that they 

must be distributed among independent processors. Aggregating one quantity per event 

becomes an SQL group by operation, which in principle examines the entire dataset for 

matching event identifiers. HEP data occupy a completely different regime, though— the 

number of particles per event is small enough that they easily fit in one processing engine, 

and so it would be wasteful to examine the whole dataset or even a partition to find 

particles belonging to a given event. It is much more efficient to keep particles belonging to 

a given event contiguous, find them by index, and ensure that they are never split between 

independent processors. 

A fourth method, which we have never seen in practice, addresses the problem of 

recursively defined types. Nested lists of lists do not need to be represented by separate 

counter or offset columns: the counters for all levels of nesting can be rolled up into one 

column. We call this method “recursive counters.” 

Consider the following example: 

        [ [(1, 1.1)], [], [(2, 2.2), (3, 3.3)] ], [ [(4, 4.4)] ] 

The square brackets represent lists and the parentheses represent a record with two fields, 

“a” and “b.” The list brackets are colored to indicate depth of structure. 

The structure of both list levels can be packed into a single counter as follows (with 

flattened attribute data in separate columns): 

counter 3,1,          0,  2,                      1,1 

data-a      1,              2,        3,              4 

data-b         1.1,            2.2,      3.3,            4.4 

The first value in the counter gives the length of an outer list, which is 3, and the next three 

values (1, 0, 2) give the lengths of inner lists. The next value after that gives the length of the 

next outer list, which is 1, followed by one value for the length of its inner list (1). Starting at 

the beginning, one can always interpret whether a value pertains to an outer list or an inner 

list by maintaining a stack of counter indexes. There is no maximum depth of nesting if 

there is no maximum depth for this stack of counters. 
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Given a recursively defined type like “T is a list of objects of type T,” the recursive counter 

algorithm works without modification. A finite tree of data terminates on lists of length 0, 

which tells the stack of counter indexes to pop immediately. Types including records, such 

as trees with data at each node, and union types, such as different types for inner nodes 

and leaf nodes, are more complicated but essentially the same mechanism. 

This method has a slight disadvantage for compression, since list lengths of very different 

cardinality are folded into a single stream of numbers, and it is not usable for random 

access data. Our reason for excluding it is that iterating over nested loops, 

for p1 in event.particles: 

    for p2 in event.particles: 

        do_something(p1, p2) 

requires the stack of counters to be copied so that we can unwind to the previous state at 

the end of an inner loop. If sublists like p2 can be saved and used outside of the loop, even 

more bookkeeping is required. This adds a great deal of complexity and significant 

degradation in performance. 

Finally, the missing expressiveness of not having recursively defined types can be made up 

for (and more) by adding a pointer type. Recursively defined types only permit arbitrarily 

deep trees, not circular references; pointers do both. 

The fifth and last method for describing hierarchical data in columns is the one used by 

Dremel and its open-source implementation, Parquet. Rather than introducing counters, 

offsets, or event identifiers, whose values scale with the size of the dataset or the nested 

collections within it, Dremel/Parquet introduces “repetition levels,” which only scale to the 

depth of the nested structure. This is especially valuable in a storage format, since it 

encodes all list structure with a minimum number of bits. A similar concept, “definition 

levels,” sparsely encodes missing data, including empty lists. (Definition levels are required 

to allow lists to be empty.) 

In principle, this encoding could represent recursively defined types by allowing the 

repetition level to take any nonnegative integer (in a variable-width format, for instance), 

but Parquet does not currently take advantage of this capability. This encoding does not 
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permit O(1) random access, but it is intended as a storage format with variable-width 

packings and compression. 

Many of the developers of the Parquet Java and C++ libraries are also developers of Apache 

Arrow, an in-memory format intended for iterative analysis. It is significant that they did not 

choose to represent hierarchical structure in Arrow using repetition and definition levels, 

but rather offset columns. This is the method we will focus on for the remainder of this 

document.  

The PLUR data model 

To simplify the discussion and implementation of columnar, hierarchical data, we consider 

only four kinds of types: 

● Primitives: fixed-width quantities, mostly numbers of different resolutions (32 and 

64 bit integers, unsigned integers, single and double precision floating point), but 

also potentially logical types (booleans, 1 or 8 bit) and fixed-width characters (ASCII, 

Unicode UTF32, but not UTF8). 

● Lists: homogeneous, ordered, arbitrary-length sequences of some other type. 

LIst(T) is a type constructor that takes any type T and produces a list of that type. 

Lists can be nested. Strings are lists of bytes and optional types (also known as 

“nullable” or “maybe monads”) are lists with a maximum length of 1. 

● Unions: set of possible types {T}, of which an instance has only one type (tagged at 

runtime). Known in type theory as a “sum type,” this allows lists to be slightly 

non-homogeneous, containing several predetermined types, such as “electrons,” 

“muons,” and “taus,” rather than just “particles.” 

● Records: unordered set of named, typed fields, such as “particle containing energy 

(float) and mass (float).” May also be represented as an ordered tuple of unnamed, 

typed fields, in which case the names are just the fixed indexes of the tuple. In type 

theory, this is a “product type,” complementary to unions in the sense that an 

instance contains a member of every type it contains (a particle has energy and 

mass, not energy or mass). 

We use the acronym “PLUR” (Primitives, Lists, Unions, and Records) to refer to this data 

model and the data representation described in the next subsection. The PLUR data model 
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is simpler than the typesystems of most programming languages and most data 

serialization systems, but we believe that this minimal set is sufficient for useful work. In 

fact, most HEP analysis could be done without unions (PLR), but excluding unions would 

force ugly workarounds in the few cases when they are needed. 

Many data structures for high-performance algorithms cannot be directly constructed in 

PLUR because PLUR only represents data, it doesn’t necessarily serve it in the most optimal 

way for fast algorithms. For example, a HashMap<K,V> can be represented as a PLUR 

List(Record(key:K,value:V)), but it doesn’t have O(1) lookup unless an actual hashmap is 

constructed from the list. We assume that an implemented typesystem includes metadata 

to indicate when a PLUR type should be used as-is or used to construct some runtime 

object. 

Also, note that our record types do not have names. The fields are named, which is a 

minimum requirement for duck typing and structural typing, and this typesystem is suitable 

for languages that dispatch functions that way. Nominal typing, such as a system that 

would distinguish a “Point3d” with attributes “x”, “y”, “z” from a “Vector3d” with the same 

attributes (e.g. to apply an affine coordinate transformation to the first and a linear 

transformation to the second) can be satisfied by supplying distinct names as type 

metadata or names generated from content to emulate structural typing in a nominally 

typed language. This may be used, for instance, to distinguish a UTF8String from a 

List(byte). 

A particularly important “runtime type” is Pointer<C>. Pointers are represented by PLUR 

integers with type metadata identifying another column— the pointer “references” that 

data . These references might be outside of the data structure, such as an event collection 2

with links to external calibration data, or it might be within the data structure, like particles 

pointing to the jets they are associated with, and it might even be circular, creating graph 

structures. The availability of pointer types makes it unimportant for the typesystem to 

include recursively defined types, since the tree structures this feature would allow can be 

made with pointers instead. 

2  This is less powerful than pointers in C, which can point to any type of data. However, that flexibility 
is rarely desired and may be the data structure equivalent of limiting code to WHILE and not GOTO. 
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Just as runtime types are an abstraction layer above PLUR, concerning themselves with 

which functions accept a given set of arguments or how to build data structures for 

high-performance algorithms, PLUR is concerned only with representing hierarchical data 

as columnar arrays, not the representation of the arrays themselves. It is an abstraction 

layer over the arrays, which may be in memory, on disk, in a simple file like Numpy’s “.npy” 

format, in a complex file like HDF5 or ROOT, or generated on demand. They may be 

compressed, big-endian, or in a variable-width format, as long as a name and an index 

returns a primitive value of the correct type. 

Thus, PLUR is not a file format or even an in-memory representation like Apache Arrow. To 

the degree that PLUR represents list structure, sparse union structure, and record structure 

the same way that Arrow does, Arrow data may be used with tools that interpret PLUR 

data, but it is a one-way compatibility. 

The PLUR data representation 

An object that can be described in terms of Primitives, Lists, Unions, and Records can be 

represented as a set of arrays with unique names. These generated names are usually 

appended to a user-provided prefix, so that they can fill different corners of a namespace 

containing many PLUR objects. If this prefix ends with a “/” and the namespace is a 

filesystem, then each columnar array becomes a file. We use the word “column” to refer to 

the array description— name and partition— and the word “array” to refer to the numerical 

data they contain. 

A sometimes-useful feature of the generated column names is that they losslessly encode 

the data type. Thus, an object can be reconstructed from its column names and data even if 

the type information is lost or not saved in a separate metadata system. 

Reusing a set of arrays in a different data structure amounts to viewing them with a 

different set of column names. One level of name-indirection can save petabytes of disk 

space by sharing common components among different versions of a dataset, slims, or soft 

skims. 
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The following algorithm packs a data structure D of type T into named arrays. Recursion 

begins with D = the whole object, T = the whole type, and N = the user-provided prefix. 

● If T is a primitive, append D to an array named N, creating it if it doesn’t exist yet. 

● If T is a list with contained type T’ and length ℓ, find an array named N + “-Lo” (list 

offset). If it does not yet exist, create it with a single element 0. Then, select the last 

element e from this array and append ℓ + e to the end of the array. 

Next, iterate through each item in the list and apply the rule for T = T’ with name N = 

N + “-Ld” (list data) on the element as D. 

● If T is a union with possible types T1, …, Tn and D has actual type Tt, find or create an 

array named N + “-Ut” (union tag) and append t. 

Next, follow the rule for type T = Tt with name N = N + “-Ud” + t (union data t) on the 

same data D. 

● If T is a record with field names and field types (N1,T1), …, (Nn,Tn), follow the rule for 

each pair Nf,Tf using name N = N + “-R_” + Nf (record field Nf), type T = Tf, and the field 

data as D. 

Primitive types have a one-to-one relationship between the data to be represented and the 

array contents, though boundaries such as event boundaries are ignored. Lists and unions 

require integer-valued arrays to represent their structure, though the maximum value in 

the union tag array is known and can be used to pack the data, usually within one byte (or 

less!). Records have no structure other than contributing to column names. For this reason, 

records are the most malleable types— we can add or remove layers of record structure 

(e.g. turning raw 4-momentum components into 4-momentum objects) without touching 

the data. 

The transformation of a hierarchical object into columnar arrays and its type into column 

names is reversible: see arXiv:1708.08319 for the algorithm. 

The unions described here are Arrow’s “sparse unions” in that they don’t pad arrays for 

data that do not exist. Since the columns associated with each type branch can have a 

different offset, random access to a union requires an offset array “-Uo” to jump to the right 

element of the type branch. This offset array can be generated from the tag array “-Ut” (see 

the same paper for an algorithm). 
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Lists in PLUR may have several different representations. The list offset “-Lo” described 

above provides compatibility with Arrow, but a list size “-Ls” would provide compatibility 

with ROOT; the two are easily interconvertible. In addition, we make use of list begin “-Lb” 

and list end “-Le” arrays which can be derived from a list offset: 

begin = offset[:-1]    # Pythonic slicing 

end = offset[1:]       # (in Numpy, these are views, not copies) 

giving us additional flexibility to skip list elements or step through them out of order. This 

will be relevant for soft skims and database-style indexing. 

Datasets and partitions 

Given a set of named arrays, a “dataset” is a mapping from names to names, where the 

new names are consistent with a PLUR type structure, and all offsets exist . Datasets are 3

usually derived from other datasets so that they have semantic meaning as well. 

A dataset need not be a list of objects, such as a list of events. It could be a record (possibly 

containing lists) or even a single primitive. But typically, and for all data derived from ROOT, 

the topmost type constructor is “List.” 

Lists may be split among independent processing units to perform calculations in parallel; 

each partial list (split at an integer number of items in all substructure) is called a partition. 

The partition number must be part of the column lookup, and the dataset description must 

include all partition numbers. 

Naturally, calculations that are scattered among partitions can’t include loop-carried 

dependencies— the product of these calculations is usually a monoid, such as an 

aggregation, a histogram, or new dataset columns with the same partitioning as the parent. 

Monoids can be incremented in-place within a partition and combined across partitions. 

Repartitioning small partitions into larger ones by integer factors is easy— concatenate 

every two, every three, every ten, etc. Any other repartitioning is hard— more so than with 

3  That is, if a list offset “-Lo”, list begin “-Lb”, list end “-Le” minus one, or union offset “-Uo” 
contain a value e that would be applied to another array, that e  must be less than the 
length of the target array. 
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flat tables. In general, one needs to find the item boundaries, which are further 

complicated if the list is described by begin/end arrays, rather than an offset or size array. 

Dataset manipulations 

Once a PLUR object has been produced or converted from another format, it has a natural 

dataset, the set of column names and data type used in the production or conversion. 

However, this is only a starting point. 

Most calculations that take a dataset as input will implicitly “project” it, which is to produce 

a new dataset by dropping unused record fields (also known as “slimming”). Most 

languages have a dot-syntax for extracting record attributes, and the name of the attribute 

must be known during parsing. With a simple type-check, all record fields that might be 

used in a calculation can be determined before executing the code, and hence a much 

smaller projected dataset can be derived from the source by just ignoring some columns. 

This vastly reduces the data to be loaded before processing, in a way that is similar to 

ROOT’s “SetBranchStatus.” 

Projections may also be explicit, for instance to bind to a new C++ class with fewer fields or 

fields with different names than the one used to generate the data, as in schema evolution. 

If a new version of the class has additional fields or fields with different data types, then a 

new columnar array will need to be generated according to some rule, such as generating a 

constant, estimating the quantity from other values, or casting one type to another. These 

operations do not affect the unaltered fields and thus schema evolution is a minimally 

invasive operation, which may be done on the fly. 

Updating a dataset changes its content by adding fields or changing values in fields, such as 

applying a new calibration or fixing an incorrectly computed value. Usually, one wants to 

keep the original dataset for continuity and A/B tests. To update a columnar dataset, one 

only needs to supply the new columns, new dataset name/version identifier, and new 

mapping of names to names. Since the new version of the dataset and the old version 

share most of their data, the old version may be kept in perpetuity. The only limitation is 

that lists cannot increase their lengths, only drop items or reassign items from one list to 

another at the same level of structure. 
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A semantically more complex list operation partitions a once-continuous list into shorter 

sublists within a data structure (not to be confused with the “dataset partitions” described 

in the previous section). As an example, one may fit a dataset of events into a larger dataset 

of runs, luminosity blocks, and events (a list of lists of lists). The events and their contents 

are unchanged, but the continuous list is broken into luminosity block chunks, which are 

further broken into run chunks. This has semantic consequences for code executed on the 

old and new datasets: 

for event in events: 

    do_something(event) 

becomes 

for run in runs: 

    for luminosityBlock in run.luminosityBlocks: 

        for event in luminosityBlock.events: 

            do_something(event) 

all without touching the event data. This technique will be relevant for implementing zone 

maps in the database-style indexing section below. 

Data can be skimmed (dropping events) in two ways: soft skimming leaves the original 

unfiltered data as it is and adds two columns, an alternate list begin (“-Lb”) and list end 

(“-Le”); hard skimming actually copies the original. Alternate begin/end arrays act to update 

the dataset like any other column, but operate on list structure. The “event list” is the begin 

array; the end array is used to quantify sublist length when events are not abutting (an 

offset array is not sufficient). This operation can be applied to any list, including particle lists 

within events. 

A hard skim is a traditional HEP skim: a literal copy. There are a few circumstances when 

one might want to do this heavyweight operation (in terms of processing time and storage 

of the result), such as downloading only the skimmed events and repartitioning skimmed 

data so that it can be accessed more quickly. Columnar structure does not impede 

traditional skimming, but it doesn’t help, either. During a hard skim, one must also choose 
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columns to select (a hard skim is also a hard slim), whereas a soft skim takes all columns 

implicitly. 

Zero-deserialization scanning 

One particularly attractive feature of representing hierarchical data in arrays is that 

traditional data structures such as C++ classes and std::vectors do not need to be filled. 

Generally, the way programmers and data analysts interact with hierarchical data is 

through objects, but this is a syntactic convenience. The data themselves do not need to be 

contiguous objects in memory at runtime. 

If data analysts were to thoroughly understand the splitting procedure, they could write 

analysis code that accesses the array elements by index. However, this is too much to ask— 

it’s not their job to dig into low-level details of data representation. They need to focus on 

the physics and statistical issues, for which a high-level object-oriented interface is most 

convenient. 

Instead of converting data from arrays into object structures, we can convert user code so 

that it accesses array elements by index. This code conversion could be seen as a kind of 

inverse of data deserialization, changing the code to meet the data as it is, rather than 

changing the data to meet the assumptions of the code. This technique and its results are 

discussed at length in arXiv:1708.08319. In short, it can produce very fast analysis functions 

because restructuring data into objects is a much slower operation than the simple 

predicates that are applied to most events. 

Database-style indexing 

Another feature that columnar data opens up is the possibility of database-style indexing. 

While zero-deserialization scanning accelerates access by some constant multiple, 

database-style indexing can change the time complexity of the search, e.g. from linear to 

logarithmic. Depending on the query, the gains could be orders of magnitude. 

Indexing techniques, however, are usually designed with tabular data in mind. Hierarchical 

data adds the complication that there are complex relationships among arrays of different 

lengths. A major simplification, however, is that our data are immutable, so the cost of 
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generating an index is less relevant and there is no cost associated with maintaining the 

index— only (minor) storage considerations. 

The key problem is that physicists want to select events based on the properties of particles 

contained within those events. Using particle data to form a predicate on events implies 

some sort of aggregation: does the physicist want the maximum value among particles in 

each event, the sum, or something more complex? It’s often a maximum subject to some 

filter on particles, such as “maximum pT track with χ2/Ndof < 10,” which is a different quantity 

than “maximum pT track with χ2/Ndof < 5.” It would not be possible to generate an index on 

all such possibilities. 

However, the majority of the selection power is in the cut on raw particle properties: 

“maximum pT track.” Given that an event contains such a particle, a fine-grained predicate 

can be later applied to verify that it is exactly what the physicist wants. Thus, we can 

provide coarse indexes that do the bulk of the data reduction, which then have to be 

followed up by fine-grained predicates applied to the reduced data. We need to use 

inequality theorems such as “the maximum pT track is greater than or equal to the 

maximum pT track with χ2/Ndof < 10.” The physicist user will need to supply the coarse 

selection and the fine-grained predicate to ensure that the intersection of these is desired, 

since coarse selections can’t, in general, be derived from procedural code . 4

Probable candidates for indexes include first, second, third, and fourth largest pT 

(momentum transverse to the beamline) for every particle type in the event, the MET 

(missing transverse energy), and possibly number of primary vertexes and maximum 

displaced vertex. Note that pT maxima imply existence of particles up to a count of four, 

and usually a physicist only trusts that a particle was properly reconstructed if its 

momentum is greater than a given threshold. More complex quantities could be indexed, 

such as masses of particular combinations of particles, particles in reconstructed decay 

chains, or particles with “blessed” isolation cuts, but these would be analysis group-specific, 

generated at the request of the interested parties. All of these quantities are functions of 

an event, not a particle, so the indexes are applied to the table of events. 

4  This is one area where a declarative analysis language would help. Since declarative code is 
algebraic, coarse selections could be algebraically derived from fine selections in the code. With 
procedural code, one could identify specific patterns, such as an “if” statement whose predicate only 
includes equalities and inequalities (no functions) appearing directly within a “for” loop. 
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Now that our quantities to index are functions of the events, we can adapt standard 

indexing techniques to them. Below, we will describe zonemaps, bitmaps, and two kinds of 

sorting, though other techniques may also apply. 

Soft sorting with permutation indexes 

Sorting a dataset provides an absolute index: if a user is interested in events with “highest 

muon pT > 50” and the events are sorted by maximum muon pT, we can safely find the first 

event with a pT > 50 muon by a bisection search and iterate from there to the end. Only 

matching events would be passed on to the analysis function. 

The situation is complicated by the fact that different analysis groups are interested in 

different quantities: physically sorting the list of events by maximum muon pT improves 

searches for events with high muon pT but worsens searches for events with 

“second-highest jet pT > 100.” However, the list does not have to be physically  sorted. 

Leaving the data as-is, we can create several “soft sorted” versions of the same list by 

computing the permutation that would sort it using the argsort function. 

Walking through a PLUR-represented list involves offset-lookups; walking through it in a 

sorted order with a permutation array adds only one more layer of indirection. Instead of 

finding the ith event and its particles by 

eventdata[i] and particledata[particleoffset[i]], 

we would find the ith sorted event and its particles by 

eventdata[permutation[i]] and 

particledata[particleoffset[permutation[i]]]. 

There is another hidden cost in accessing data this way: disk and/or memory accesses are 

non-sequential. The relative impact of page-misses versus skipping unnecessary events 

depends on the specifics of the problem and remain to be seen. 

It is also fairly common for analyses to be interested in two or more particle collections, 

such as “highest muon pT > 50 AND second-highest jet pT > 100.” It would not be possible 

(without a degradation in performance) to resolve the intersection while iterating over the 

 
18 HSF-CWP-019 



 
 

results: the intersection (or union for logical OR) must be performed before iteration. 

Intersection and union algorithms with hashmaps are linear in the size of the sets; Numpy’s 

intersect1d and union1d are O(n log n), but they return a sorted list of indexes, which 

might be preferred because the pass over PLUR arrays would then be sequential. 

It must be emphasized that these operations— sorting, intersection, and union— would be 

performed on individual column partitions, not the entire dataset, which could span many 

independent processors. Sorting 8 MB of random numbers takes hundreds of milliseconds 

at most. Furthermore, our datasets are immutable, so the sorted indexes do not need to be 

updated, once built. 

Zonemap indexing 

Zonemaps are an approximate index which summarize data in a zone (interval) of events, 

where the zone size (number of events) is a configurable parameter. Zonemaps typically 

store the maximum and minimum values of the indexed quantity, so that a search for 

“events with pT > 50” can skip zones whose maximum pT is less than or equal to 50. Some 

quantities, such as pT, might only need one-sided zonemaps, since the low-pT end of the 

particle spectrum is dominated by noise . Some quantities that are selected in very narrow 5

ranges, such as J/ψ mass, would be entirely unhelped by zonemaps. 

Zonemaps can also be hierarchical. Whereas the first layer of zones allow a scan to skip 

unwanted events, another layer can be built on top that skips unwanted first-layer zones. 

With enough layers, the time to find a rare event can be logarithmic in the total number of 

events, with the base of the logarithm being the depth of the tree of nested zonemaps. 

The advantage that a zonemap provides over a sequential scan, guarded by a predicate, is 

that the predicate is only evaluated for a minority of the events. That is, a zonemap with 

zone size 100 can replace 100 floating point pT comparisons (1 per event) or more (1 per 

particle with multiple particles per event) with just 1 or 2 (just maximum or maximum and 

minimum). If zones are too large or the desired selection is not sufficiently rare, the zone 

map provides no advantage, but only adds 1 or 2 comparisons per zone. 

5  On the other hand, analyses desiring the absence of a particle (“exclusive searches”) might find 
value in a minimum pT. 
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Sometimes, evaluating the per-event predicate is not the bottleneck— loading the data is. 

Fetching a columnar array from disk or over a network can be considerably more expensive 

than the floating point comparisons, due to limitations in physical hardware. If the data are 

being fetched from disk, the ideal scenario would be to make zone sizes equal to disk pages 

(4 kB) and memory-map the predicate arrays, so that array indexes are only touched if a 

selection passes the zone map. If the data are being fetched over a network, the zonemap 

has no natural granularity, but selections should be batched to minimize network requests 

for the zones that match. 

Unfortunately, it may be impossible to match zone sizes to disk pages for hierarchical data. 

Zones are intervals of events, but the predicates and subsequent analysis operates on 

particles, which in general have different offsets. A disk page of event-level quantities may 

be more or less than a disk page of particle attributes, often dramatically different. 

Moreover, we can’t make zones apply exactly to disk pages of particle attributes by varying 

the number of events per zone because they must correspond to an integer number of 

events. However, if we make the first layer of zonemaps significantly smaller than the size 

of disk-pages per particle, only a minority of them would straddle disk pages, resulting in 

fewer but not zero unnecessary disk-page loads. 

Varying the number of events in a zone to improve zone size for a particular type of particle 

could worsen the zone size for another type of particle. Events contain rare particle types 

(such as electrons and muons) and abundant particle types (such as jets), and tuning zone 

size for both might not be possible. It may be that rare and abundant particles are served 

by selections at different layers in the zonemap hierarchy. All of these are issues that are 

only raised because our data are not tabular, and are therefore interesting from a 

theoretical point of view. 

Once a zonemap has selected a subset of events for further investigation, a sequential scan 

must be executed on that subset. The zonemap selection must be efficiently delivered to 

the scanning procedure or the advantage would be lost. One way to do that would be to 

integrate the zonemaps directly into the PLUR code transformation (described in the 

previous section). Zonemaps can be added to a dataset as just a few new columns that 

partition the data similar to the run/luminosity block/event example above. 
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That is, we add the following three new columns: 

zone-Lo 

zone-Ld-R_ptmax 

zone-Ld-R_events-Lo 

and drop one: 

events-Lo 

to make a dataset in which the List(Event) becomes a List(Record(ptmax=float64, 

events=List(Event))). In addition, code is transformed from 

for event in events: 

    do_something(event) 

to 

for zone in zones: 

    if zone.ptmax > 50: 

        for event in zone.events: 

            do_something(event) 

All of the event content and structures within the event are preserved and none of the 

original columns need to be modified, and yet the data structure is changed: events are no 

longer a continuous stream, but short sublists within the list of zones. This procedure can 

be applied to arbitrarily many levels of zonemaps. 

The method we just described integrates zonemap-selection with the user’s analysis code, 

and thus they will be executed at the same time. In some circumstances, it may be 

preferable to select all zones before executing any user code, such as when the purpose of 

the zonemap is to minimize network traffic: we want to batch all array-subset requests 

before submitting them. 

In this case, we 

1. use the zonemap to find a set of event indexes to select, 
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2. download the dataset’s list begin (“-Lb”) and list end (“-Le”) arrays for the particles of 

interest (or make them out of list offsets (“-Lo”) or list sizes (“-Ls”) if that is how these 

particle lists are characterized), 

3. look up the list begin and end values for only the events of interest and make a new 

list begin and end for the subset, 

4. use these ranges in a batch request from the data source, over the network, 

5. use these begin/end arrays in place of the originals. The user code does not need to 

be modified. 

With either method, the malleability of data in a columnar format is key to performing 

these operations quickly. 

Bitmap indexing 

Another technique for accelerating selections is to reduce event-level quantities to a few 

bits per event and perform bitwise operations to identify matches. Unlike zonemaps, 

bitmaps characterize every event, and are therefore more useful for less-rare searches. 

They are also useful for searches that target mid-range values, such as J/ψ and Z masses or 

central η regions, rather than extremes. Bitmaps are a particularly natural choice for 

selecting events by the detector trigger that caused them to be saved and reconstructed, 

since these quantities are already booleans. 

Bitmaps first reduce a quantity to a small number of bits. Triggers (early decisions in 

detector read-out, boolean-valued) can be represented by one bit each, and a user’s 

predicate like “muonTrigger OR jetTrigger” would be translated into “triggerBits & 

(muonTriggerMask | jetTriggerMask)”, where the parenthesized quantity is a constant that 

can be precomputed. 

A quantity for which inequalities are interesting can be binned, such as 16 bins for η 

(pseudorapidity) from η = −0.8 to η = +0.8.The first and last bin can serve as underflow and 

overflow bins, taking η values beyond the window. Each value of η fills only one bit, 

producing patterns like 0000001000000000. A user’s predicate like “−0.4 ≤ η < 0.4” gets 

translated into the following mask: 0000111111110000. Predicates that don’t exactly line up 

with bin edges must be expanded to be slightly too inclusive, and a predicate within the 

user code must remove the edge cases. 
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Some quantities are only interesting in very narrow ranges, for which the above would be 

too coarse. J/ψ and ψ’ masses, for instance, have well-known values that are nearly equal. 

Custom windows that separate them define categorical values, for which categorical 

equality, rather than ordinal inequality, is interesting: an analysis function either selects  J/ψ 

particles or ψ’ particles, not both in the same pass. In this case, distinct values can be 

mapped to distinct bit patterns, like 11 of the 16 possible integers expressible with four bits 

(representing, e.g., η, ρ/ω, ϕ,  J/ψ, ψ’, ψ’’, ϒ(1S), ϒ(2S), ϒ(3S), ϒ(4S), and Z dimuon mass 

windows). These bit patterns would be matched by integer equality, rather than bit masks. 

It’s important to note that bitmasks don’t change the number of comparisons that must be 

made, only the speed with which they are performed. A bit mask is much faster to compute 

than a floating point comparison, and might require less data to be loaded. Furthermore, 

bit masks can be vectorized, whereas the nested structure of user analysis code often 

prevents vectorization. So while bitmasks provide an acceleration technique, they don’t 

change the time complexity of searches, the way sorting and zonemaps do. 

Hard sorting particles for better disk utilization 

All of the methods described above select a subset of events for further study. Preselecting 

with an index reduces the number of predicates to be evaluated in the analysis function, 

but what if the bottleneck is disk-loading, rather than predicate-evaluation? A selection that 

eliminates more than a factor of 1024 avoids some unnecessary disk page-reads, assuming 

4 kB disk pages and 4-byte data values. However, index-selections that eliminate far less 

than that, such as an index-selection that only removes half of the events, would hit every 

or nearly every page because the gaps between selected events are not nearly large 

enough to include whole pages. 

Under these conditions, all effort spent indexing the data is wasted: skipping events doesn’t 

save time. However, we can avoid this situation by concentrating useful events on the same 

pages. 

To do this, we need to physically (“hard”) sort the events. Primarily, the particle columns 

must be sorted because most of the data is found in particle attributes. For the PLUR data 

representation to be valid, we must maintain the contiguous order of particles within each 
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event, but move all particles associated with an event as a group such that events have the 

preferred ordering. This involves some tricky indexing, but it is possible. 

Next, we need to decide on an order of events. Sorting by muon pT improves searches for 

events with a constraint on that quantity, but worsens searches for events with a constraint 

on another quantity, such as jet pT. Fortunately, the columnar representation allows us to 

physically sort muon-related columns by muon pT and jet-related columns by jet pT, so we 

do not need to pick a favorite attribute for the whole event. We do have to pick a favorite 

attribute for each particle type, but in HEP, the choice is clear: it should be the pT of that 

particle. 

Finally, to use the physically sorted columns, we need list begin (“-Lb”) and end (“-Le”) arrays 

that translate the original order to the new order. With these in place, the new, sorted 

dataset appears to the user exactly like the original one, but when they step through events 

in the original order, array values are extracted in the sorted order. Access with this dataset 

will always be non-sequential. 

The advantage is that preselection techniques such as the soft sorting with permutation 

indexes, zonemap-skipping, or bitmap filter yield results that are concentrated at the end of 

the physically sorted arrays, assuming the user selected for high pT. Though out of order, 

they are likely to touch and therefore load fewer disk pages, even for preselections that 

eliminate only half of the events. In a regime dominated by disk access bottlenecks, this 

could be the difference between database-style indexing having no impact to having a 

significant impact. 

Concluding remarks 

This document describes some of the many possibilities that are made possible by 

representing hierarchical data as columns, and further managing the data with columnar 

granularity. These techniques promise to dramatically reduce data duplication while 

optimizing access. Zero-deserialization iteration and database-style indexing become 

possibilities when the data are physically represented by simple, numerical arrays. 

In this document, we also described a specific mechanism for expressing complex types as 

arrays: any types describable as a combination of Primitives, Lists, Unions, and Records 
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(PLUR) can be split into flat arrays. Knowing the rules for how these arrays are to be 

interpreted, they can be manipulated to emulate dataset updates, slimming, skimming, and 

other restructuring without any data duplication. Data analysts no longer need to decide 

upfront which attributes they might need in their analyses, nor do they have to repeat a 

months-long filtering job when they guess incorrectly. Sysadmins no longer need to 

provision storage for multiple versions of the same data with different cuts or different 

versions of the same data. 

This style of access works best on a shared server, since it maximizes the degree to which 

different views of the data can reuse the same physical copy. There are some reasons why 

copying may still be necessary— to get local access or repartition after a highly selective 

cut— and these “hard skims” would have the same difficulties that data management has 

today, no worse. 

However, given the benefit of shared data stores, we advocate for the development of 

query-based analysis, in which all analysis functions, including final plots, are produced by 

querying the shared data store. High throughput and low latencies would be critical for 

such a system to compete with local hard skims, so we seek to take advantage of 

zero-deserialization scanning and database-style indexing as much as possible. 

These techniques are currently under study as research, but with the goal in mind of 

developing a usable product. We are in touch with the physicist user base and computer 

science researchers to make this project a reality. 
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